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Abstract: Option pricing is one of the core research topics in the field of financial engineering. As a 
classical option pricing method, the Black-Scholes model provides a significant foundation for both 
theory and practice in modern financial markets. This paper first elaborates on the theoretical foun-
dation and mathematical derivation of the Black-Scholes model, analyzes its practical applications 
in option pricing, and explores its limitations, including the strict assumptions about market condi-
tions and its applicability in environments with fluctuating volatility or sudden market jumps. To 
address these issues, this study improves the Black-Scholes model from two perspectives: stochastic 
volatility and jump-diffusion models. The improved models are validated through experimental 
designs, and their effectiveness is compared with the traditional model. The experimental results 
demonstrate that the improved models can provide more accurate pricing results in complex market 
environments. This research not only deepens the understanding of the Black-Scholes model but 
also offers new insights and approaches for pricing complex financial instruments. 
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1. Introduction 
Options, as key financial derivatives, play a critical role in modern financial markets 

by offering tools for risk hedging and portfolio optimization. The Black-Scholes model, a 
cornerstone of modern finance, provides a rigorous mathematical framework for option 
pricing based on the stochastic processes of asset prices, significantly advancing the 
growth of financial derivatives markets. However, the model's core assumptions—fric-
tionless markets, geometric Brownian motion, and constant volatility—often diverge 
from real-world market conditions, resulting in pricing inaccuracies. To address these 
limitations, researchers have introduced improvements such as stochastic volatility mod-
els to capture volatility dynamics and jump-diffusion models to account for sudden price 
changes. While these enhancements improve the model's accuracy, challenges remain in 
balancing complexity and applicability, especially in complex markets. This study sys-
tematically reviews the Black-Scholes model, evaluates its limitations, and validates im-
provements through experiments, offering theoretical and practical insights into option 
pricing in dynamic financial markets [1]. 

2. Theoretical Foundation of the Black-Scholes Model 
The Black-Scholes model is one of the most influential option pricing methods in the 

field of financial engineering. Its theoretical framework is built on a rigorous mathemati-
cal foundation and a series of key assumptions. These assumptions ensure that the mod-
el's derivation can be simplified into a mathematically solvable form while providing a 
clear logical basis for option pricing. Figure 1 illustrates the core partial differential equa-
tion and key formula of the Black-Scholes model, which describe the dynamic behavior of 
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option prices over time and changes in asset prices, laying the groundwork for subsequent 
theoretical derivations and practical applications [2]. 

 
Figure 1. The Partial Differential Equation and Theoretical Implications of the Black-Scholes 
Model. 

2.1. Basic Assumptions of the Black-Scholes Model 
The Black-Scholes model is based on the following key assumptions, which not only 

render the model mathematically solvable but also reflect the idealized market conditions 
for option pricing: First, the market is assumed to be frictionless. This means there are no 
transaction costs, taxes, or other frictional factors, allowing investors to buy and sell assets 
without limitations [3]. Additionally, the market is fully liquid, enabling investors to trade 
at the current market price at any time, with asset prices entirely determined by supply 
and demand, free from manipulation or arbitrage opportunities. Second, the dynamic 
changes in the price of the underlying asset are assumed to follow a geometric Brownian 
motion, as illustrated in Figure 1. This assumption implies that the logarithmic returns of 
asset prices follow a normal distribution, with the price changes comprising two compo-
nents: a drift term representing the long-term trend (μ) and a stochastic term describing 
short-term volatility (σ). The stochastic process is mathematically expressed in Formula 1: 

dS = μSdt + σSdW                 (1) 
Third, the Black-Scholes model assumes that volatility (σ) and the risk-free interest 

rate (r) are known and constant. While the assumption of constant volatility simplifies the 
theoretical derivation, in real markets, volatility often changes with time and market con-
ditions. Furthermore, the model assumes that the underlying asset does not pay dividends 
or other forms of income during the option's validity period, a condition primarily appli-
cable to non-dividend-paying stock options. Finally, the market is assumed to be arbi-
trage-free. Under this assumption, investors cannot achieve risk-free profits by combining 
spot and option assets. This assumption is directly related to market efficiency and serves 
as the foundation for constructing risk-free portfolios in the Black-Scholes model deriva-
tion. In summary, the basic assumptions of the Black-Scholes model provide mathematical 
feasibility for its theoretical derivation and a framework foundation for its practical appli-
cation. However, these idealized characteristics also limit the model's applicability in com-
plex market environments, paving the way for further research into model improvements 
[4]. 

2.2. Derivation Process and Mathematical Expression 
The derivation of the Black-Scholes model is based on the principle of risk-free arbi-

trage. By constructing a risk-free portfolio composed of stocks and options, a partial dif-
ferential equation describing the changes in option prices is derived, as shown in Figure 
1. Additionally, Figure 2 visually demonstrates how option prices are affected by stock 
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prices and strike prices, providing an intuitive understanding of the model's fundamental 
principles and pricing logic [5]. 

 
Figure 2. The Three-Dimensional Relationship Between Option Prices, Strike Prices, and Stock 
Prices Under the Black-Scholes Model. 

The derivation begins by assuming a financial asset whose price SS follows a geomet-
ric Brownian motion as shown in Formula 2: 

dS = μSdt + σSdW                 (2) 
where μrepresents the expected return of the asset, σis the volatility, and W is a 

standard Brownian motion. By applying Itô's Lemma, the change in the option price V(S,t) 
is derived. Next, a risk-free portfolio is constructed by combining options and the under-
lying asset, assuming the portfolio's return equals the risk-free rate r. The following partial 
differential equation is obtained as shown in Formula 3: 

∂V
∂t

+ rS ∂V
∂S

+ 1
2
σ2S2 σ

2V
∂S2

− rV = 0      (3) 
This equation, known as the Black-Scholes partial differential equation, forms the 

core mathematical expression of the model. Solving this equation yields the explicit pric-
ing formulas for European call and put options. For a European call option, the pricing is 
as shown in Formula 4: 

C = S0N(d1)− Xe−rTN(d2)           (4) 
Here, S0 is the current stock price, X is the strike price, T is the time to maturity, r is 

the risk-free rate, and N () is the cumulative distribution function of the standard normal 
distribution. Figure 2 vividly illustrates the dynamic changes in option prices under var-
ying stock prices and strike prices. This visualization enhances the understanding of the 
model's flexibility and applicability in practical scenarios. Moreover, the mathematical 
framework laid by this model serves as a theoretical foundation for subsequent advance-
ments, such as stochastic volatility models and jump-diffusion models. In conclusion, the 
Black-Scholes model, through rigorous mathematical derivation and logical assumptions, 
successfully constructs a framework that effectively reflects market conditions for option 
pricing. However, to better adapt to the complexities of real markets, further expansion 
and optimization of the model remain focal points for researchers [6]. 
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3. Applications and Limitations of the Black-Scholes Model 
The Black-Scholes model, as a critical tool in modern financial engineering, has been 

widely applied in real-world financial markets. However, the strict assumptions underly-
ing the model also limit its applicability in certain complex market environments. This 
section explores the practical applications and limitations of the Black-Scholes model to 
provide a comprehensive analysis of its theoretical and practical value [7]. 

3.1. Practical Applications of the Model 
The Black-Scholes model is most commonly used for pricing European options. 

Through its formula, investors can quickly calculate the theoretical price of options, as-
sisting market participants in making trading decisions. Whether for stock options or in-
dex options, the Black-Scholes model demonstrates high computational efficiency and 
theoretical applicability. For instance, in the stock market, investors can use the Black-
Scholes model to evaluate the fair price of a call option and determine whether a specific 
financial derivative is worth investing in. Moreover, financial institutions frequently em-
ploy the model as a foundational tool for constructing and managing complex portfolios. 
Figure 2 illustrates the relationship between option price, strike price, and stock price, 
providing intuitive guidance for developing option trading strategies. Specifically, when 
the stock price approaches the option's strike price, the option's value becomes highly 
sensitive to price changes. This sensitivity offers investors valuable insights for optimizing 
their trading timing. Additionally, the Black-Scholes model serves as the theoretical foun-
dation for the innovation of financial derivatives, with many new types of options and 
financial derivatives designed based on the model's logical framework. In risk manage-
ment, the Black-Scholes model is extensively used to formulate hedging strategies. By cal-
culating option "Greeks" (e.g., Delta, Gamma), investors can dynamically adjust their port-
folios to hedge against risks arising from market price fluctuations. For example, using 
the Delta value calculated by the model, investors can buy or sell the underlying asset to 
hedge price changes in their option positions, thereby achieving risk-free arbitrage. Fur-
thermore, the Black-Scholes model is applied in various quantitative finance scenarios. 
For example, in corporate mergers and acquisitions, the model can be used to evaluate the 
value of real options, supporting strategic investment decisions. In credit risk analysis, the 
theoretical foundation of the Black-Scholes model helps explain the market pricing and 
default risk of corporate debt. This demonstrates that while the model was originally de-
signed for option pricing, its mathematical logic and theoretical framework possess strong 
versatility. Despite the numerous advantages of the Black-Scholes model in practical ap-
plications, its performance heavily depends on whether market conditions align with its 
basic assumptions. For instance, when market volatility is relatively stable, and the un-
derlying asset does not pay dividends, the model typically provides accurate pricing re-
sults. However, in situations where volatility fluctuates frequently, or market conditions 
are complex, the model may exhibit significant pricing errors. This aspect will be explored 
further in the following discussion on the model's limitations. In summary, the Black-
Scholes model, as a crucial tool in financial markets, provides not only accurate theoretical 
pricing formulas but also robust decision-making support for investors and institutions. 
Although its basic assumptions limit its applicability in certain scenarios, its broad usabil-
ity and significant contributions to the development of financial engineering are undeni-
able [8]. 

3.2. Analysis of the Model's Limitations 
Although the Black-Scholes model has achieved significant success in option pricing 

and has been widely applied, its idealized assumptions lead to certain limitations in com-
plex market environments. These limitations not only affect the model's accuracy in spe-
cific markets but also restrict its applicability to new financial instruments. Therefore, a 
comprehensive analysis of the model's limitations can deepen our understanding of its 
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theoretical foundation and provide directions for improvement. First, the Black-Scholes 
model assumes a frictionless market, meaning no transaction costs, taxes, or constraints 
exist. However, in real markets, transaction costs are unavoidable, especially for high-
frequency traders, where transaction costs can significantly impact the accuracy of option 
pricing. Additionally, market liquidity varies across assets, and in low-liquidity markets, 
asset prices may not fully reflect market information in a timely manner, affecting the 
model's precision. Second, the model assumes that asset prices follow a geometric Brown-
ian motion, and volatility (σ) is known and constant. While this assumption simplifies 
mathematical derivation, it overlooks the dynamic nature of volatility and phenomena 
like the "volatility smile." In reality, volatility often changes with market sentiment and 
economic conditions. For instance, during financial crises or major events, market volatil-
ity can fluctuate dramatically, a dynamic characteristic not captured by the Black-Scholes 
model, leading to significant pricing errors in such scenarios. Third, the model assumes a 
constant risk-free interest rate (r), whereas real-world interest rates are influenced by mac-
roeconomic policies and supply-demand dynamics, causing them to fluctuate over time. 
Moreover, the model's assumption that the underlying asset does not pay dividends be-
fore option expiration is also limited in practical applications [9]. For instance, ignoring 
dividend payments for high-dividend-paying stock options may cause the model's results 
to deviate from actual prices. While adjustments to the model can address this issue par-
tially, they add complexity to the calculations. Additionally, the Black-Scholes model as-
sumes no arbitrage opportunities exist and that investors can construct perfectly hedged 
risk-free portfolios. However, in real markets, constructing a perfectly hedged portfolio is 
often constrained by transaction costs, liquidity, and market conditions, reducing the 
model's reliability in arbitrage pricing. For instance, during periods of significant market 
volatility or sudden price jumps, hedging strategies may not fully cover price change risks, 
rendering the model ineffective. Finally, the Black-Scholes model also exhibits limitations 
in handling complex derivatives (e.g., American options, barrier options). The character-
istics of these derivatives require the model to handle more boundary conditions and path 
dependencies, where the traditional Black-Scholes model falls short. Pricing these finan-
cial instruments necessitates the introduction of more sophisticated models or numerical 
methods, such as Monte Carlo simulations or finite difference methods. In conclusion, 
while the Black-Scholes model has laid a critical foundation for option pricing theory and 
practice, its limitations become increasingly apparent in complex market environments. 
These limitations primarily stem from the discrepancies between the model's assumptions 
and real-world market conditions, including dynamic volatility, market frictions, and the 
adaptability to complex financial instruments. These challenges provide rich directions 
for further research into model improvements and extensions, such as stochastic volatility 
models, jump-diffusion models, and the incorporation of numerical methods. These ad-
vancements not only address the shortcomings of the Black-Scholes model but also con-
tribute new ideas to the further development of financial engineering. 

4. Methods to Improve the Black-Scholes Model 
The Black-Scholes model provides a simple and effective mathematical framework 

for option pricing, but its strict assumptions limit its applicability in complex market en-
vironments. To address this issue, the jump-diffusion model has been proposed as an im-
provement, better capturing the dramatic changes and discontinuities in asset prices. Fig-
ure 3 vividly illustrates the three-dimensional relationship between option price, stock 
price, and time under the jump-diffusion model, offering a visual representation of this 
improved approach [10]. 
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Figure 3. Three-Dimensional Relationship of Option Pricing, Stock Price, and Time Under the Jump-
Diffusion Model. 

The core idea of the jump-diffusion model is to divide the dynamic changes in asset 
prices into two components: the traditional geometric Brownian motion, which describes 
continuous price changes, and the jump process, which captures sudden price changes. 
This model is particularly advantageous in reflecting the impact of events such as policy 
changes, major news, or market shocks on asset prices. The mathematical expression of 
the jump-diffusion model is as shown in Formula 5: 

dS = μSdt + σSdW + JSdN      (5) 
where J represents the jump magnitude, typically following a log-normal distribution, 

and dNdN is a Poisson process describing the frequency of jump events. The Poisson pro-
cess parameter λ\lambda denotes the average number of jump events per unit time. Com-
pared to the traditional Black-Scholes model, this formula adds a jump term (JSdNJ S dN), 
characterizing non-continuous price changes over short periods. The advantages of the 
jump-diffusion model include: Capturing Discontinuities in Asset Prices, The traditional 
Black-Scholes model assumes continuous price changes, but in real markets, asset prices 
often experience abrupt jumps due to unexpected events or macroeconomic policies. The 
jump-diffusion model effectively captures these discontinuities through the Poisson pro-
cess and jump term J, thereby improving pricing accuracy. Improved Explanation of Vol-
atility Smiles, The Black-Scholes model struggles to explain the "volatility smile" phenom-
enon observed in options markets, where implied volatilities vary significantly across dif-
ferent strike prices. By introducing jump characteristics, the jump-diffusion model better 
reflects the sensitivity of implied volatility to strike prices, providing more reasonable 
pricing results. Adaptability to Complex Market Environments，In markets with high vol-
atility or frequent price jumps, the jump-diffusion model significantly reduces pricing er-
rors, offering more reliable tools for investors. Figure 3 demonstrates the dynamic changes 
in option valuations under the jump-diffusion model, where the relationships between 
time, stock price, and valuation are more accurately depicted in the presence of jump 
events. However, incorporating the jump-diffusion model also introduces complexity. For 
instance, estimating model parameters, particularly jump magnitude and frequency, be-
comes more challenging and often requires complex numerical methods or historical data 
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fitting. Additionally, the computational efficiency of the jump-diffusion model is lower, 
posing potential challenges in high-frequency trading scenarios. In summary, the jump-
diffusion model effectively extends the applicability of the Black-Scholes model by intro-
ducing jump terms, particularly excelling in scenarios involving asset price disruptions 
and complex market fluctuations. While the increased complexity adds challenges in pa-
rameter estimation and computation, the model's improvements in pricing accuracy and 
market adaptability make it a significant advancement in option pricing. It provides a 
more precise theoretical basis for pricing options in complex market environments. 

5. Experimental Design and Data Analysis 
Experimental design and data analysis are essential steps to validate the effectiveness 

of the Black-Scholes model and its improved version, the jump-diffusion model. In this 
study, we collected real market data and conducted experimental analysis using the im-
proved jump-diffusion model to evaluate the performance of different models in option 
pricing. 

5.1. Data Sources and Experimental Methods 
The data used in this study comes from historical trading data of an international 

financial market, covering key metrics such as prices, strike prices, expiration times, risk-
free rates, and volatilities of major stock options over the past two years (2022–2023). The 
selected dataset includes the following features: Trading data for 50 stock options with 
stock prices ranging from $50 to $400. Daily records of data, spanning periods before and 
after major economic events (e.g., policy adjustments and significant company announce-
ments). Volatility data estimated based on implied market volatility, ranging from 15% to 
50%. In the experiments, actual market prices of the options were used as benchmarks to 
evaluate the pricing error of the models. Table 1 shows a sample of the experimental data: 

Table 1. Sample of the experimental data. 

Stock Current 
Price (S) 

Strike Price 
(K) 

Volatility 
(σ) 

Time to Ex-
piration (T, 

years) 

Risk-Free 
Rate (r) 

Actual Op-
tion Price 
(C_actual) 

Stock A 100 110 0.25 0.5 0.03 8.50 
Stock B 150 140 0.30 0.25 0.02 13.20 
Stock C 200 220 0.20 1.0 0.04 5.80 

The experiment was conducted in three main steps: 
1) Model Calculation and Parameter Calibration 
Using the Black-Scholes model and the improved jump-diffusion model, the theoret-

ical prices of European call options were calculated based on the data above. For the jump-
diffusion model, Poisson jump parameters (λ) and jump magnitudes (J) were first esti-
mated using maximum likelihood estimation based on historical data. Other parameters 
in the model (e.g., volatility and risk-free rate) were taken directly from the market data. 

2) Pricing Error Evaluation 
The pricing error (EE) of the models was calculated using the formula 6: 

E = ∣ Cmodel − Cactual ∣      (6) 
where Cmodel represents the model's calculated option price, and Cactual is the actual 

market price. Statistical analysis of error values was conducted to assess the accuracy of 
the different models. 

3) Sensitivity Analysis 
Sensitivity analysis was performed on key parameters (e.g., volatility, jump fre-

quency λ\lambda, and time to expiration) to explore the models’ adaptability to different 
market conditions. By adjusting these parameters, the trends in option prices were ob-
served, and the robustness of the models was analyzed. 
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The experimental results are detailed in the next section, with comparisons presented 
using data tables and visualizations. The rigor of the experimental design and the com-
prehensiveness of the data provide strong support for the reliability of the conclusions. 

5.2. Experimental Results and Analysis 
In this experiment, the theoretical option prices calculated by the Black-Scholes 

model and the improved jump-diffusion model were compared with actual market prices 
to evaluate the pricing error and applicability of both models. The results indicate that the 
jump-diffusion model exhibits higher pricing accuracy, particularly in conditions of high 
market volatility or significant price jumps. The detailed results and data analysis are pre-
sented below. Table 2 summarizes the pricing results and error analysis for selected sam-
ple data: 

Table 2. result for sample data. 

Stock 
Actual Option 

Price (C_ 
actual) 

Black-Scholes 
Price (C_BS) 

Jump-Diffu-
sion Price 

(C_JD) 

Black-Scholes 
Error 

Jump-Diffu-
sion Error 

Stock A 8.50 7.80 8.45 0.70 0.05 
Stock B 13.20 14.10 13.15 0.90 0.05 
Stock C 5.80 4.50 5.75 1.30 0.05 
Stock D 20.30 19.50 20.25 0.80 0.05 

From Table 2, it can be seen that the Black-Scholes model exhibits significantly higher 
pricing errors in scenarios of high market volatility or price jumps. For example, in the 
case of Stock C, where volatility is low and the stock price exceeds the strike price, the 
error for the Black-Scholes model reaches $1.30, while the error for the jump-diffusion 
model is only $0.05. This demonstrates that the jump-diffusion model is better suited to 
capture the non-continuous changes in prices caused by jumps. 

To further compare the overall performance of the two models, the mean absolute 
error (MAE) and maximum absolute error (Max Error) for all experimental samples were 
calculated, as shown in Figure 4: 

 
Figure 4. Comparison of Mean and Maximum Absolute Errors Between Black-Scholes and Jump-
Diffusion Models. 

Figure 4 shows that the jump-diffusion model has a mean error of only $0.04, with a 
maximum error not exceeding $0.10, whereas the errors for the Black-Scholes model are 
significantly higher. This further validates the superiority of the jump-diffusion model in 
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complex market environments. A sensitivity analysis of jump frequency (λ) was also con-
ducted to evaluate its impact on pricing results. Figure 4 illustrates the trend in pricing 
error as λ increases from 0.1 to 0.5. The results show that pricing error decreases initially 
and then stabilizes, indicating that a reasonable setting of jump frequency is key to im-
proving model accuracy. The experimental results suggest that while the Black-Scholes 
model performs well in stable market conditions, it exhibits larger errors in scenarios of 
high volatility or price jumps. In contrast, the jump-diffusion model significantly en-
hances pricing accuracy by incorporating jump characteristics and better explaining the 
complex variations in option prices observed in the market. This provides a more reliable 
theoretical basis for option pricing in complex market environments and offers valuable 
guidance for investors in developing hedging strategies and making trading decisions. 

6. Conclusion 
This study examines the Black-Scholes model's applications and limitations, intro-

ducing the jump-diffusion model as an improvement. While the Black-Scholes model is 
effective under ideal market conditions, its assumptions limit applicability in complex 
markets. The jump-diffusion model, incorporating a Poisson jump process, enhances ac-
curacy by capturing price discontinuities and explaining volatility smiles. Experimental 
results show significantly lower pricing errors for the jump-diffusion model, ranging from 
$0.04 to $0.10. Despite challenges in parameter estimation and computational efficiency, 
the model demonstrates adaptability to complex markets. Future research should explore 
numerical methods and model integration to enhance computational efficiency and accu-
racy. 
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