Research Progress on Forest Ground Fires
DOI:
https://doi.org/10.71222/mtn1pc29Keywords:
forest ground fire, ignition probability, spreading characteristics, StF phenomenon, forest fire monitoringAbstract
Forest ground fire is a phenomenon of spontaneous combustion that occurs in humus or peat layers, representing an extreme fire behavior. Monitoring ground fires is difficult, and large-scale spreading can result in air pollution, extensive tree mortality, soil structure damage, and other consequences, posing a threat to the ecological environment. Starting from the ignition, spreading, and critical stages of ground fires, this paper analyzes the conditions for ignition and spreading, as well as the applicability of ground fire prediction and forecasting models. It investigates the critical conditions for the transition from smoldering to flaming (StF) phenomenon and analyzes the deficiencies of ground fire prediction, forecasting, and monitoring technologies. It indicates that the type of ignition source, physicochemical properties of combustibles, and environmental factors are the main factors influencing the ignition probability and spreading characteristics of ground fires. The critical stage of the StF phenomenon is related to changes in environmental conditions and sudden changes in physicochemical properties of combustibles. Indirect prediction methods using drought indices, groundwater levels, etc., both domestically and internationally, have errors in predicting ground fire occurrences. Existing fire monitoring equipment cannot meet the monitoring requirements for ground fires. This paper proposes future research directions for ground fires, providing reference for ground fire research.
References
1. J. A. Eckdahl, J. A. Kristensen, and D. B. Metcalfe, "Climate and forest properties explain wildfire impact on microbial com-munity and nutrient mobilization in boreal soil," Front. For. Glob. Change, vol. 6, p. 1136354, 2023, doi: 10.3389/ffgc.2023.1136354.
2. L. Ying et al., "Forest fire characteristics in China: Spatial patterns and determinants with thresholds," For. Ecol. Manage., vol. 424, pp. 345–354, 2018, doi: 10.1016/j.foreco.2018.05.020.
3. N. Gorbach et al., "Simulation of smoldering combustion of organic horizons at pine and spruce boreal forests with lab-heating experiments," Sustainability, vol. 14, no. 24, p. 16772, 2022, doi: 10.3390/su142416772.
4. C. M. Belcher, Fire Phenomena and the Earth System, Wiley, 2013. ISBN: 9781118529539
5. M. R. Turetsky et al., "Recent acceleration of biomass burning and carbon losses in Alaskan forests and peatlands," Nat. Geosci., vol. 4, no. 1, p. 27, 2011, doi: 10.1038/NGEO1027.
6. M. A. Santoso, E. G. Christensen, and G. Rein, "The effects of pulsating wind on the transition from smouldering to flaming combustion," Fire Saf. J., vol. 141, p. 103993, 2023., doi: 10.1016/j.firesaf.2023.103993.
7. D. Drysdale, An Introduction to Fire Dynamics, 3rd ed., Wiley, 2011, doi: 10.1002/9781119975465.
8. M. A. Santoso et al., "Review of the transition from smouldering to flaming combustion in wildfires," Front. Mech. Eng., vol. 5, p. 49, 2019, doi: 10.3389/fmech.2019.00049.
9. J. Villeneuve et al., "A critical review of emission standards and regulations regarding biomass combustion in small scale units (< 3 MW)," Bioresour. Technol., vol. 111, pp. 1–11, 2012, doi: 10.1016/j.biortech.2012.02.061.
10. O. Kunii et al., "The 1997 haze disaster in Indonesia: its air quality and health effects," Arch. Environ. Health, vol. 57, no. 1, pp. 16–22, 2002, doi: 10.1080/00039890209602912.
11. T. Hu et al., "Effects of fire disturbance on soil respiration in the non-growing season in a Larix gmelinii forest in the Dax-ing'an Mountains, China," PLoS One, vol. 12, no. 6, p. e0180214, 2017, doi: 10.1371/journal.pone.0180214.
12. J. Liu et al., "Effects of forest fires on boreal permafrost and soil microorganisms: A review," Forests, vol. 15, no. 3, p. 501, 2024, doi: 10.3390/f15030501.
13. G. Rein et al., "The severity of smouldering peat fires and damage to the forest soil," Catena, vol. 74, no. 3, pp. 304–309, 2008, doi: 10.1016/j.catena.2008.05.008.
14. M. L. Schulte et al., "Short-and long-term hydrologic controls on smouldering fire in wetland soils," Int. J. Wildland Fire, vol. 28, no. 3, pp. 177–186, 2019, doi: 10.1071/WF18086.
15. H. Liu et al., "Water pollution risks by smoldering fires in degraded peatlands," Sci. Total Environ., vol. 871, p. 161979, 2023, doi: 10.1016/j.scitotenv.2023.161979.
16. R. C. Scholten et al., "Overwintering fires in boreal forests," Nature, vol. 593, no. 7859, pp. 399–404, 2021, doi: 10.1038/s41586-021-03437-y.
17. L. N. Zhichkina et al., "Forest fires and forestry firefighting organization," IOP Conf. Ser.: Earth Environ. Sci., vol. 677, no. 5, p. 052123, 2021, doi: 10.1088/1755-1315/677/5/052123.
18. S. Lin et al., "Can rain suppress smoldering peat fire?," Sci. Total Environ., vol. 727, p. 138468, 2020, doi: 10.1016/j.scitotenv.2020.138468.
19. L. M. Ramadhan et al., "Experimental study of the effect of water spray on the spread of smoldering in Indonesian peat fires," Fire Saf. J., vol. 91, pp. 671–679, 2017, doi: 10.1016/j.firesaf.2017.04.012.
20. Z. Zhu et al., "How environmental factors affect forest fire occurrence in Yunnan forest region," Forests, vol. 13, no. 9, p. 1392, 2022, doi: 10.3390/f13091392.
21. P. Sun et al., "Influence of fuel moisture content, packing ratio and wind velocity on the ignition probability of fuel beds composed of Mongolian oak leaves via cigarette butts," Forests, vol. 9, no. 9, p. 507, 2018, doi: 10.3390/f9090507.
22. J. Sohng et al., "Seasonal pattern of decomposition and N, P, and C dynamics in leaf litter in a Mongolian oak forest and a Korean pine plantation," Forests, vol. 5, no. 10, pp. 2561–2580, 2014, doi: 10.3390/f5102561.
23. F. Richter et al., "The propensity of wooden crevices to smoldering ignition by firebrands," Fire Technol., vol. 58, no. 4, pp. 2167–2188, 2022, doi: 10.1007/s10694-022-01247-w.
24. S. Wang et al., "Smoldering ignition using a concentrated solar irradiation spot," Fire Saf. J., vol. 129, p. 103549, 2022, doi: 10.1016/j.firesaf.2022.103549.
25. H. Zhang et al., "Lightning-induced smoldering ignition of peat: Simulation experiments by an electric arc with long continuing current," Proc. Combust. Inst., vol. 39, no. 3, pp. 4185-4193, 2023, doi: 10.1016/j.proci.2022.09.065.
26. G. Yang et al., "Spotting ignition of larch (Larix gmelinii) fuel bed by different firebrands," J. For. Res., vol. 33, no. 1, pp. 171–181, 2022, doi: 10.1007/s11676-020-01282-9.
27. A. C. Fernandez-Pello et al., "Spot fire ignition of natural fuel beds by hot metal particles, embers, and sparks," Combust. Sci. Technol., vol. 187, no. 1-2, pp. 269–295, 2015, doi: 10.1080/00102202.2014.973953.
28. R. M. Hadden et al., "Ignition of combustible fuel beds by hot particles: An experimental and theoretical study," Fire Technol., vol. 47, no. 2, pp. 341–355, 2011, doi: 10.1007/s10694-010-0181-x.
29. S. Wang et al., "Interaction between flaming and smouldering in hot-particle ignition of forest fuels and effects of moisture and wind," Int. J. Wildland Fire, vol. 26, no. 1, pp. 71–81, 2016, doi: 10.1071/WF16096.
30. J. L. Urban et al., "Smoldering spot ignition of natural fuels by a hot metal particle," Proc. Combust. Inst., vol. 36, no. 2, pp. 3211–3218, 2017, doi: 10.1016/j.proci.2016.09.014.
31. S. Suzuki and S. L. Manzello, "Experimental and theoretical approaches to elucidate fuel bed ignition exposed to firebrand showers and radiant heat," Int. J. Heat Mass Transfer, vol. 202, p. 123740, 2023, doi: 10.1016/j.ijheatmasstransfer.2022.123740.
32. W. Fang, Z. Peng, and H. Chen, "Ignition of pine needle fuel bed by the coupled effects of a hot metal particle and thermal radiation," Proc. Combust. Inst., vol. 38, no. 3, pp. 5101-5108, 2021, doi: 10.1016/j.proci.2020.05.032.
33. V. M. Santana and R. H. Marrs, "Flammability properties of British heathland and moorland vegetation: models for predicting fire ignition," J. Environ. Manage., vol. 139, pp. 88-96, 2014, doi: 10.1016/j.jenvman.2014.02.027.
34. J. Sun et al., "Facing the wildfire spread risk challenge: where are we now and where are we going?," Fire, vol. 6, no. 6, p. 228, 2023, doi: 10.3390/fire6060228.
35. M. He et al., "Effect of density on the smoldering characteristics of cotton bales ignited internally," Proc. Combust. Inst., vol. 38, no. 3, pp. 5043–5051, 2021, doi: 10.1016/j.proci.2020.06.219.
36. K. Anderson, "A model to predict lightning-caused fire occurrences," Int. J. Wildland Fire, vol. 11, no. 4, pp. 163-172, 2002, doi: 10.1071/WF02001.
37. A. Ganteaume, C. Lampin-Maillet, M. Guijarro, et al., "Spot fires: fuel bed flammability and capability of firebrands to ignite fuel beds," Int. J. Wildland Fire, vol. 18, no. 8, pp. 951-969, 2009, doi: 10.1071/WF07111.
38. R. M. Hadden, G. Rein, and C. M. Belcher, "Study of the competing chemical reactions in the initiation and spread of smoul-dering combustion in peat," Proc. Combust. Inst., vol. 34, no. 2, pp. 2547-2553, 2013, doi: 10.1016/j.proci.2012.05.060.
39. X. Zhou, S. Mahalingam, and D. Weise, "Experimental study and large eddy simulation of effect of terrain slope on marginal burning in shrub fuel beds," Proc. Combust. Inst., vol. 31, no. 2, pp. 2547-2555, 2007, doi: 10.1016/j.proci.2006.07.222.
40. W. Li et al., "Predictive model of spatial scale of forest fire driving factors: a case study of Yunnan Province, China," Sci. Rep., vol. 12, no. 1, 2022, doi: 10.1038/s41598-022-23697-6.
41. E. G. Christensen, N. Fernandez-Anez, and G. Rein, "Influence of soil conditions on the multidimensional spread of smoul-dering combustion in shallow layers," Combust. Flame, vol. 214, pp. 361-370, 2020, doi: 10.1016/j.combustflame.2019.11.001.
42. X. Huang and G. Rein, "Interactions of Earth's atmospheric oxygen and fuel moisture in smouldering wildfires," Sci. Total Environ., vol. 572, pp. 1440-1446, 2016, doi: 10.1016/j.scitotenv.2016.02.201.
43. C. A. Bigelow, D. C. Bowman, and D. K. Cassel, "Physical properties of three sand size classes amended with inorganic mate-rials or sphagnum peat moss for putting green rootzones," Crop Sci., vol. 44, no. 3, pp. 900-907, 2004, doi: 10.2135/cropsci2004.9000.
44. S. Yin et al., "Study on the limit of moisture content of smoldering humus during sub-surface fires in the boreal forests of China," Forests, vol. 14, no. 2, p. 252, 2023, doi: 10.3390/f14020252.
45. S. Yin et al., "Characterizing and predicting smoldering temperature variations based on non-linear mixed effects models," J. For. Res., vol. 33, no. 6, pp. 1829-1839, 2022, doi: 10.1007/s11676-022-01463-8.
46. F. He et al., "Effects of fuel properties on the natural downward smoldering of piled biomass powder: Experimental investi-gation," Biomass Bioenergy, vol. 67, pp. 288–296, 2014, doi: 10.1016/j.biombioe.2014.05.003.
47. T. Gnatowski, E. Ostrowska-Ligęza, C. Kechavarzi, et al., "Heat capacity of drained peat soils," Appl. Sci., vol. 12, no. 3, p. 1579, 2022, doi: 10.3390/app12031579.
48. H. Chen, W. Zhao, and N. Liu, "Thermal analysis and decomposition kinetics of Chinese forest peat under nitrogen and air atmospheres," Energy Fuels, vol. 25, pp. 797-803, 2011, doi: 10.1021/ef101155n.
49. X. Huang and G. Rein, "Upward-and-downward spread of smoldering peat fire," Proc. Combust. Inst., vol. 37, no. 3, pp. 4025-4033, 2019, doi: 10.1016/j.proci.2018.05.125.
50. X. Lu, H. Hu, and L. Sun, "Effect of fire disturbance on active organic carbon of Larix gmelinii forest soil in Northeastern China," J. For. Res., vol. 28, pp. 763-774, 2017, doi: 10.1007/s11676-016-0362-7.
51. M. Wang et al., "Effects of different heating times and humus particle sizes on vertical combustion of forest underground fire based on simulated spot burning," J. Beijing For. Univ., vol. 43, no. 3, pp. 66-72, 2021, doi: 10.12171/j.1000-1522.20200047.
52. J. G. Torrent et al., "Assessment of self-ignition risks of solid biofuels by thermal analysis," Fuel, vol. 143, pp. 484–491, 2015, doi: 10.1016/j.fuel.2014.11.074.
53. E. G. Christensen, Y. Hu, D. M. J. Purnomo, et al., "Influence of wind and slope on multidimensional smouldering peat fires," Proc. Combust. Inst., vol. 38, no. 3, pp. 5033-5041, 2021, doi: 10.1016/j.proci.2020.06.128.
54. J. H. Wang, C. Y. H. Chao, and W. Kong, "Experimental study and asymptotic analysis of horizontally forced forward smol-dering combustion," Combust. Flame, vol. 135, no. 4, pp. 405-419, 2003, doi: 10.1016/j.combustflame.2003.07.001.
55. N. Gorbach et al., "Simulation of smoldering combustion of organic horizons at pine and spruce boreal forests with lab-heating experiments," Sustainability, vol. 14, no. 24, p. 16772, 2022, doi: 10.3390/su142416772.
56. Z. Zhang et al., "Smouldering-to-flaming transition on wood induced by glowing char cracks and cross wind," Fuel, vol. 352, p. 129091, 2023, doi: 10.1016/j.fuel.2023.129091.
57. N. Gorbach et al., "Simulation of smoldering combustion of organic horizons at pine and spruce boreal forests with lab-heating experiments," Sustainability, vol. 14, no. 24, p. 16772, 2022, doi: 10.3390/su142416772.
58. M. M. Ahmed et al., "Simulations of flaming combustion and flaming-to-smoldering transition in wildland fire spread at flame scale," Combust. Flame, vol. 262, p. 113370, 2024, doi: 10.1016/j.combustflame.2024.113370.
59. Z. Zhang, P. Ding, S. Wang, et al., "Smouldering-to-flaming transition on wood induced by glowing char cracks and cross wind," Fuel, vol. 352, p. 129091, 2023, doi: 10.1016/j.fuel.2023.129091.
60. X. Y. Han et al., "Combustion characteristics and occurrence probability of shallow underground fire in Larix gmelinii planta-tion," J. Beijing For. Univ., vol. 44, no. 2, pp. 47-54, 2022, doi: 10.12171/j.1000−1522.20200353.
61. V. M. Santana and R. H. Marrs, "Flammability properties of British heathland and moorland vegetation: models for predicting fire ignition," J. Environ. Manage., vol. 139, pp. 88-96, 2014, doi: 10.1016/j.jenvman.2014.02.027.
62. G. Rein, N. Cleaver, C. Ashton, et al., "The severity of smouldering peat fires and damage to the forest soil," Catena, vol. 74, no. 3, pp. 304-309, 2008, doi: 10.1016/j.catena.2008.05.008.
63. S. G. Otway, E. W. Bork, K. R. Anderson, et al., "Predicting sustained smouldering combustion in trembling aspen duff in Elk Island National Park, Canada," Int. J. Wildland Fire, vol. 16, no. 6, pp. 690-701, 2007, doi: 10.1071/WF06033.
64. Y. Hu, N. Fernandez-Anez, T. E. L. Smith, et al., "Review of emissions from smouldering peat fires and their contribution to regional haze episodes," Int. J. Wildland Fire, vol. 27, no. 5, pp. 293-312, 2018, doi: 10.1071/WF17084.
65. Y. G. Sahin, "Animals as mobile biological sensors for forest fire detection," Sensors, vol. 7, no. 12, pp. 3084-3099, 2007, doi: 10.3390/s7123084.