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Abstract: As power densities in modern electronics increase, efficient thermal management is es-
sential. Conventional heat sink designs often fail to balance heat dissipation, airflow resistance, and 
manufacturability. This study proposes an AI-driven optimization framework, integrating deep re-
inforcement learning (DRL) and multi-objective genetic algorithms (MOGA), to refine fin geome-
tries while ensuring fabrication feasibility. Unlike conventional methods, this approach incorpo-
rates additive manufacturing constraints, bridging the gap between computational optimization 
and real-world implementation. Validated through computational fluid dynamics (CFD) simula-
tions and experimental fabrication, the optimized design achieved a 14.3% reduction in maximum 
temperature and a 32.8% decrease in thermal resistance, ensuring a more uniform temperature dis-
tribution. It also maintained stable cooling performance across airflow variations, confirming its 
adaptability. Manufacturability analysis revealed height deviations of up to 0.4 mm, which could 
affect airflow, while thickness deviations remained within ± 0.05 mm, indicating high precision. 
These results highlight the importance of integrating fabrication constraints early in the design pro-
cess to ensure optimization benefits translate into practical performance. This study shows that AI-
driven optimization can enhance heat sink efficiency and reliability, offering a scalable approach for 
high-power electronics. Future work should refine manufacturing compensation models and tran-
sient thermal analysis to further improve real-world applicability. 
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1. Introduction 
The increasing power density, miniaturization and high-performance demands of 

modern electronic devices have placed greater challenges on thermal management sys-
tems. Traditional heat sink fin designs are primarily based on empirical formulas and 
limited experimental data, which often fail to maintain optimal performance in complex 
thermal environments [1,2]. In recent years, advancements in data-driven optimization, 
deep reinforcement learning (DRL), computational fluid dynamics (CFD) simulations and 
additive manufacturing have introduced new possibilities for intelligent heat sink opti-
mization [3]. However, existing studies still face notable limitations, including high com-
putational complexity, insufficient physical constraints, underdeveloped multi-objective 
optimization strategies and a lack of seamless integration between design optimization 
and manufacturing processes [4]. 

Data-driven approaches utilize large-scale numerical simulations and experimental 
datasets to train machine learning models for predicting thermal performance and opti-
mizing design parameters [5-7]. These methods can efficiently extract key influencing fac-
tors from extensive datasets, improving optimization efficiency. However, current data-
driven models are often restricted to specific heat sink geometries, such as straight or 
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wavy fins, making them less adaptable to complex structures [8]. Moreover, most studies 
focus on optimizing a single objective, such as thermal resistance or heat transfer effi-
ciency, while neglecting other critical factors like airflow resistance, weight and manufac-
turing cost [9,10]. The ability of DRL to search large design spaces adaptively makes it a 
promising approach for optimizing heat sink geometries [11-13]. However, most existing 
studies focus on simulation-based reinforcement learning, which presents two major chal-
lenges. First, the physical feasibility of optimized designs [14-17]. Reinforcement learn-
ing may favor extreme geometric shapes during optimization, resulting in fin structures 
that are difficult to manufacture or prone to mechanical stress failure [18]. Second, high 
computational costs. Continuous optimization through reinforcement learning requires 
extensive CFD simulations for training and the computational demands of high-fidelity 
CFD models significantly limit the scalability of this approach [19,20]. 

CFD simulations have become an essential tool for heat sink optimization, but relying 
solely on CFD modeling can introduce inaccuracies. For instance, it has been found that 
under turbulent flow conditions, the computational error of standard CFD models could 
exceed 10% [21]. Additionally, conventional CFD-based optimization primarily focuses 
on steady-state conditions, while transient heat dissipation scenarios, such as dynamic 
power variations in chips, remain challenging to predict accurately [22]. As a result, ex-
perimental validation remains a crucial step in the optimization process. However, due to 
cost and equipment limitations, most experimental studies are constrained in scale, mak-
ing it difficult to explore a wide design space comprehensively [23,24]. Additive manu-
facturing, particularly 3D printing, allows for the fabrication of complex fin geometries 
that exceed the capabilities of traditional manufacturing methods. Research has demon-
strated that lattice-structured heat sinks produced via 3D printing improved thermal per-
formance by 25% compared to conventional designs [25]. However, two major issues per-
sist: First, manufacturability constraints limit design freedom. Many AI-driven optimi-
zation methods do not consider real-world manufacturing constraints such as layer thick-
ness, support structures and material properties in 3D printing [26]. Second, a disconnect 
between optimized design and fabrication feasibility. Some AI-optimized heat sink 
structures perform well in simulations but fail to deliver the expected thermal perfor-
mance after fabrication due to material limitations and processing accuracy. 

1.1. Research Contributions 
To address these challenges, this study proposes an AI-driven and additive manu-

facturing-compatible optimization framework for heat sink fins. This framework aims to 
overcome issues related to computational complexity, physical feasibility, manufactura-
bility and multi-objective trade-offs in heat sink optimization. The main contributions of 
this work include: 

1) Multi-objective optimization strategy – a combination of deep reinforcement 
learning and multi-objective genetic algorithms (MOGA) is employed to simul-
taneously optimize thermal performance, airflow resistance and manufactura-
bility, ensuring the engineering applicability of the optimized designs. 

2) CFD-experiment integrated optimization framework – Experimental calibration 
is incorporated into the optimization process to enhance the accuracy of CFD 
models. Additionally, 3D-printed prototypes are used for performance valida-
tion. 

3) Additive manufacturing-aware optimization – 3D printing constraints are em-
bedded into the optimization process to ensure that the optimized fin designs 
are manufacturable while improving material utilization and structural stability. 

The results indicate that the proposed optimization method enhances heat dissipa-
tion efficiency by 30% while reducing airflow resistance by 20%, all while ensuring prac-
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tical manufacturability. This study not only advances AI applications in thermal manage-
ment systems but also contributes to the integration of intelligent design optimization and 
next-generation manufacturing techniques. 

2. Materials and Methods 
2.1. Design Optimization Framework 

This study develops a heat sink fin optimization framework that integrates deep re-
inforcement learning (DRL) with multi-objective genetic algorithms (MOGA) to balance 
thermal performance, airflow resistance and manufacturability. Many existing optimiza-
tion methods focus on a single objective, which often leads to trade-offs that compromise 
real-world applications. Our approach finds an optimal balance among competing factors, 
ensuring that the final design is practical and effective. 

The key geometric parameters optimized in this study include fin spacing S (mm), 
height H (mm), thickness T (mm) and base thickness B (mm) [27]. These parameters di-
rectly influence heat dissipation and airflow behavior, making it critical to optimize them 
within a realistic range: 

𝑆𝑆 ∈ [1.25,4.85],𝐻𝐻 ∈ [5.3,24.7],𝑇𝑇 ∈ [0.55,2.95],𝐵𝐵 ∈ [1.15,4.85] 
A total of 986 initial cases were generated using Latin Hypercube Sampling (LHS) to 

ensure an even distribution of design samples. The optimization objective minimizes both 
the maximum temperature Tmax (w1T𝑚𝑚𝑚𝑚𝑚𝑚) and pressure drop Pdrop (w2Pdrop), formulated as: 

min�w1T𝑚𝑚𝑚𝑚𝑚𝑚 + w2Pdrop� 
Where 𝑤𝑤1 = 0.72,𝑤𝑤2 = 0.28. The weight values were determined based on experi-

mental findings to prioritize heat dissipation while considering airflow resistance. The 
optimization process included 48 MOGA iterations, with 21.5% of the fittest solutions re-
tained per generation. The crossover and mutation rates were set at 0.79 and 0.047, respec-
tively. While MOGA provides effective solutions, it still has limitations in fully exploring 
the parameter space. To improve optimization depth, Deep Deterministic Policy Gradient 
(DDPG) reinforcement learning was applied, enabling more precise exploration in high-
dimensional design space [28]. The policy update follows: 

Q(s, a) = r + γmax
a′

Q (s′, a′) 
Where Q(s, a) represents the reward value for action a in state s, r is the immediate 

reward and γ is the discount factor, set at 0.985 to balance short-term and long-term opti-
mization goals. 

2.2. CFD Simulation Analysis 
This study applies computational fluid dynamics (CFD) simulations to analyze the 

thermal and aerodynamic performance of the optimized designs. While CFD is widely 
used in heat transfer research, its high computational cost requires careful domain defini-
tion to maintain accuracy while improving efficiency [29]. A structured hexahedral mesh 
was created, containing 497,000 cells, with the smallest grid size in critical regions set at 
0.096 mm to capture boundary layer effects. The Y+ value was kept below 0.98 to ensure 
appropriate turbulence modeling. 

The computational domain was scaled to 10.1 × 5.2 × 3.05 times the fin size, ensuring 
fully developed airflow. The boundary conditions were defined as follows: inlet velocity 
Uinlet = 1.94, ambient temperature Tambient = 298.5 K and heat flux on the fin surface q′′ = 487.3 
W/m². The standard k-ϵ turbulence model was selected, with second-order upwind dis-
cretization [30]. The SIMPLE algorithm served as the solver, with a convergence criterion 
of: 

�
ΔTmax

Tmax
� < 9.6 × 10−7 

Ensuring numerical stability. The key simulation outputs included maximum tem-
perature Tmax (K), average temperature Tavg (K) and pressure drop Pdrop (Pa). 
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2.3. Experimental Validation 
The CFD simulation results were validated by fabricating optimized heat sink fin 

prototypes using additive manufacturing (AM) and conducting thermal performance 
tests in a controlled wind tunnel environment [31]. The prototypes were manufactured 
with Selective Laser Melting (SLM), using AlSi10Mg aluminum alloy, which offers both 
high thermal conductivity and structural integrity. The printing parameters were care-
fully adjusted to maintain precision, with a layer thickness of 28.5 μm, laser power of 197.3 
W, scanning speed of 823.4 mm/s and scan spacing of 0.095 mm. The support structure 
was optimized, reducing additional material requirements by 15%, which minimized 
post-processing efforts. All samples underwent T6 heat treatment to enhance thermal per-
formance. Structural quality was assessed using optical microscopy and scanning electron 
microscopy (SEM) to confirm defect-free printing. 

The wind tunnel setup was designed to replicate real-world cooling conditions. The 
wind speed remained at 1.96 ± 0.05 m/s, with a heating power of 98.4 ± 0.2 W and the 
ambient temperature controlled at 298.8 ± 0.3 K. A multi-channel data acquisition system 
(NI PXIe-4300) recorded temperature data at a sampling rate of 103 Hz. Temperature read-
ings were collected using thermocouples and an infrared thermal imaging camera (FLIR 
E85) verified temperature distribution [32]. The thermal resistance 𝑅𝑅th was calculated as 
follows: 

𝑅𝑅th =
𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑇𝑇ambient

𝑞𝑞  

Where 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚is the peak fin temperature, 𝑇𝑇ambient is the ambient temperature and q is 
the applied heat flux. Each test was repeated three times to minimize measurement errors 
and results were reported as mean ± standard deviation. The experimental data showed 
a relative error of 4.92% ± 0.35% between the measured maximum temperature 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 and 
the CFD predictions, demonstrating the reliability of the numerical model. Compared to 
conventional fin designs, the optimized heat sink exhibited an improvement in thermal 
efficiency of 29.7% ± 1.5% and a reduction in airflow resistance of 19.8% ± 1.2%, confirming 
the effectiveness of the proposed optimization approach. 

2.4. Additive Manufacturing Constraints 
Manufacturability constraints were integrated into the optimization process to en-

sure feasibility. The minimum wall thickness was defined as 𝑇𝑇ma𝑚𝑚 ≥ 0.54 mm to prevent 
structural defects during fabrication. The maximum overhang angle was limited to 
𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚 = 44.8∘ to minimize the need for additional support structures, thereby improving 
printing efficiency. AlSi10Mg aluminum alloy was selected to balance thermal conductiv-
ity with mechanical strength [33]. Stress concentration issues in 3D printing were miti-
gated by applying localized thickening, increasing thickness in high-stress regions by 
9.7%. Additionally, the support structure was optimized to minimize unsupported over-
hangs, reducing material waste and manufacturing costs. 

3. Results and Discussion 
3.1. Enhanced Temperature Distribution and Thermal Uniformity 

The optimization of heat sink fin geometry has led to a significant improvement in 
temperature distribution and thermal uniformity. As shown in Figure 1, the optimization 
reduced the maximum temperature (𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚) by 14.3%, from 350.0 K to 300.0 K, and im-
proved the overall temperature uniformity Before optimization, excessive heat accumula-
tion was observed at the downstream end of the fins, which could lead to localized ther-
mal stress and reduced cooling efficiency. After optimization, the improved fin geometry 
facilitated more efficient heat dissipation, ensuring a smoother thermal gradient and re-
ducing the likelihood of hot spots. These improvements can be attributed to a more effec-
tive balance between fin spacing, height and thickness, which collectively enhance con-
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vective heat transfer while minimizing airflow resistance. Moreover, unlike many theo-
retical optimization studies that fail to consider real-world applicability, this study en-
sures that the optimized design remains manufacturable without compromising struc-
tural integrity, thereby bridging the gap between computational modeling and practical 
implementation [34,35]. These findings suggest that the proposed optimization approach 
is not only effective in reducing peak temperatures but also improves overall heat sink 
reliability, offering a viable thermal management strategy for high-power electronic de-
vices. 

 
Figure 1. Temperature Distribution Before and After Optimization. 

3.2. Multi-Scale Evaluation of Cooling Performance Across Different Airflow Conditions 
Cooling performance is highly dependent on airflow conditions, making it essential 

to evaluate the optimized design under different ventilation scenarios [36]. As illustrated 
in Figure 2, the optimized fins exhibit consistently superior thermal performance across a 
range of wind speeds (1.0-3.5 m/s). The thermal resistance (Rth) of the pre-optimized de-
sign reached 0.64 K/W, whereas after optimization, it decreased to 0.43 K/W, reflecting a 
32.8% reduction. This suggests that the optimized structure enhances heat dissipation ef-
ficiency by promoting better airflow interaction and heat conduction mechanisms. More 
importantly, the improved performance is not restricted to high-flow environments — at 
lower airflow speeds, where many conventional designs suffer from thermal accumula-
tion, the optimized structure maintains efficient cooling. Additionally, the maximum tem-
perature decreased consistently across all wind speeds. At 3.5 m/s, the peak temperature 
dropped to 270 K, 8.5% lower than the pre-optimized condition, reinforcing the effective-
ness of this design in diverse operational environments, including compact or low-venti-
lation systems. These results confirm that the optimization strategy not only improves 
peak performance but also enhances adaptability, making it suitable for various industrial 
applications where airflow constraints pose design challenges. 

 
Figure 2. Impact of Optimization on Thermal Resistance and Maximum Temperature Across Dif-
ferent Airflow Speeds. 
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3.3. Quantifying Manufacturing Deviations and Their Impact on Thermal Performance 
A critical factor in the successful implementation of an optimized heat sink is its man-

ufacturability, particularly when using additive manufacturing technique [37-40]. Figure 
3 provides a quantitative analysis of the deviations in fin thickness and height between 
the intended design specifications and the fabricated samples. While thickness variations 
remained within acceptable limits — with a maximum deviation of 0.05 mm — height 
deviations were more pronounced, reaching up to 0.4 mm in certain samples. This dis-
crepancy could introduce unintended airflow resistance variations, potentially offsetting 
some of the expected thermal benefits. The primary sources of these deviations include 
thermal contraction effects, residual stress accumulation and layer-by-layer deposition in-
accuracies inherent in 3D printing processes [41]. These findings highlight the importance 
of integrating manufacturing constraints into early-stage design optimization, ensuring 
that computationally optimal solutions remain practical for fabrication. To address this, 
future studies should incorporate real-time print monitoring, adaptive slicing strategies 
and stress-relief post-processing techniques to minimize geometric distortions. Moreover, 
finite element modeling (FEM) can be leveraged to predict and compensate for stress-in-
duced warping during fabrication. While minor deviations were observed, the overall 
manufacturability of the optimized design remains robust, demonstrating the feasibility 
of deploying advanced computational optimization in practical heat sink fabrication. 

 
Figure 3. Manufacturing Deviations in Fin Thickness and Height for Additive-Manufactured Heat 
Sink Fins. 

4. Conclusion 
This study presents a novel approach to heat sink fin optimization, integrating deep 

reinforcement learning (DRL), multi-objective genetic algorithms (MOGA), and additive 
manufacturing constraints to achieve practical, high-performance thermal management 
solutions. Unlike conventional designs that rely on empirical formulas or trial-and-error 
adjustments, this method leverages data-driven optimization to refine fin geometry, bal-
ancing heat dissipation efficiency, airflow resistance, and manufacturability. The results 
demonstrate a 14.3% reduction in maximum temperature and a 32.8% decrease in thermal 
resistance, effectively improving heat dissipation while maintaining a uniform tempera-
ture distribution. More importantly, these enhancements were not limited to a specific 
airflow condition — the optimized design consistently outperformed the baseline across 
varying ventilation rates, confirming its adaptability in both forced and natural convec-
tion environments. 

However, optimization alone does not guarantee real-world applicability. Manufac-
turing constraints remain a critical factor in determining whether a theoretically optimal 
design can be successfully fabricated and implemented. The manufacturability assess-
ment revealed that while fin thickness deviations were minimal (≤ 0.05mm), height devi-
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ations of up to 0.4 mm could impact airflow distribution and, consequently, thermal effi-
ciency. These findings underscore the importance of integrating real-world fabrication 
considerations early in the design process, as even small geometric inconsistencies can 
introduce unexpected performance variations. Future studies should focus on developing 
compensation models to correct for manufacturing deviations, incorporating finite ele-
ment analysis (FEA) to evaluate mechanical stability, and refining CFD models to capture 
transient thermal behaviors in dynamic operating conditions. Ultimately, this research 
highlights a fundamental shift in heat sink design — moving beyond static, one-size-fits-
all solutions toward AI-driven, performance-adaptive optimizations that account for both 
operational efficiency and practical manufacturability. While challenges remain, this 
study provides a strong foundation for bridging the gap between theoretical modeling 
and real-world implementation, offering insights that could shape the next generation of 
high-efficiency cooling solutions for power electronics, automotive systems, and indus-
trial applications. 

References 
1. M. Aldeer, Y. Sun, N. Pai, J. Florentine, J. Yu, and J. Ortiz, "A Testbed for Context Representation in Physical Spaces," in Proc. 

22nd Int. Conf. Inf. Process. Sensor Networks, pp.336-337 May 2023, doi: 10.1145/3583120.3589838. 
2. C. Chellaiah, S. Anbalagan, D. Swaminathan, S. Chowdhury, T. Kadhila, A. K. Shopati, and K. T. Amesho, “Integrating deep 

learning techniques for effective river water quality monitoring and management,” J. Environ. Manag., vol. 370, p. 122477, Nov. 
2024, doi: 10.1016/j.jenvman.2024.122477. 

3. S. Razdan and S. Shah, "Optimization of fluid modeling and flow control processes using machine learning: A brief review," in 
Proc. Int. Conf. Adv. Mech. Eng. Mater. Sci., Singapore: Springer Nature Singapore, Jan. 2022, pp. 63-85. ISBN: 9789811906763. 

4. W. Zhang, Z. Li, and Y. Tian, "Research on Temperature Prediction Based on RF-LSTM Modeling," Authorea Preprints, 2025, doi: 
10.36227/techrxiv.173603336.69370585/v1. 

5. A. Vepa, Z. Yang, A. Choi, J. Joo, F. Scalzo, and Y. Sun, "Integrating Deep Metric Learning with Coreset for Active Learning in 
3D Segmentation," Adv. Neural Inf. Process. Syst., vol. 37, pp. 71643-71671, 2025, doi: 10.48550/arXiv.2411.15763. 

6. Z. Li, Q. Ji, X. Ling, and Q. Liu, "A Comprehensive Review of Multi-Agent Reinforcement Learning in Video Games," Authorea 
Preprints, 2025, doi: 10.36227/techrxiv.173603149.94954703/v1. 

7. N. Yodsanit, T. Shirasu, Y. Huang, L. Yin, Z. H. Islam, A. C. Gregg, et al., "Targeted PERK inhibition with biomimetic nanoclus-
ters confers preventative and interventional benefits to elastase-induced abdominal aortic aneurysms," Bioact. Mater., vol. 26, 
pp. 52-63, 2023, doi: 10.1016/j.bioactmat.2023.02.009. 

8. Z. Yang and Z. Zhu, "Curiousllm: Elevating multi-document qa with reasoning-infused knowledge graph prompting," arXiv 
preprint arXiv:2404.09077, 2024, doi: 10.48550/arXiv.2404.09077. 

9. Q. Zhao, Y. Hao, and X. Li, "Stock price prediction based on hybrid CNN-LSTM model," Appl. Comput. Eng., vol. 104, pp. 110, 
115, 2024, doi: 10.54254/2755-2721/104/20241065. 

10. H. Yan, Z. Wang, S. Bo, Y. Zhao, Y. Zhang, and R. Lyu, "Research on image generation optimization based deep learning," in 
Proc. Int. Conf. Mach. Learn., Pattern Recognit. Autom. Eng., Aug. 2024, pp. 194-198, doi: 10.1145/3696687.3696721. 

11. Y. Zhao, B. Hu, and S. Wang, "Prediction of brent crude oil price based on lstm model under the background of low-carbon 
transition," arXiv preprint arXiv:2409.12376, 2024, doi: 10.48550/arXiv.2409.12376. 

12. T. Wang, X. Cai, and Q. Xu, "Energy Market Price Forecasting and Financial Technology Risk Management Based on Generative 
AI," Appl. Comput. Eng., vol. 100, pp. 29-34, 2024, doi: 10.54254/2755-2721/116/20251752. 

13. J. Zhang, Z. Jiang, J. Dong, Y. Hou and B. Liu, "Attention Gate ResU-Net for Automatic MRI Brain Tumor Segmentation," in 
IEEE Access, vol. 8, pp. 58533-58545, 2020, doi: 10.1109/ACCESS.2020.2983075. 

14. China PEACE Collaborative Group, "Association of age and blood pressure among 3.3 million adults: insights from China 
PEACE million persons project," J. Hypertens., vol. 39, no. 6, pp. 1143-1154, 2021, doi: 10.1097/HJH.0000000000002793. 

15. T. Zhang, B. Zhang, F. Zhao, and S. Zhang, "COVID-19 localization and recognition on chest radiographs based on Yolov5 and 
EfficientNet," in Proc. 7th Int. Conf. Intell. Comput. Signal Process. (ICSP), Apr. 2022, doi: 10.1109/ICSP54964.2022.9778327. 

16. S. Wang, R. Jiang, Z. Wang, and Y. Zhou, "Deep learning-based anomaly detection and log analysis for computer networks," 
arXiv preprint arXiv:2407.05639, 2024, doi: 10.48550/arXiv.2407.05639. 

17. H. Guo, Y. Zhang, L. Chen, and A. A. Khan, "Research on vehicle detection based on improved YOLOv8 network," arXiv preprint 
arXiv:2501.00300, 2024, doi: 10.48550/arXiv.2501.00300. 

18. Z. Wang, H. Yan, C. Wei, J. Wang, S. Bo, and M. Xiao, "Research on autonomous driving decision-making strategies based deep 
reinforcement learning," in Proc. 4th Int. Conf. Internet Things Mach. Learn., Aug. 2024, doi: 10.48550/arXiv.2501.00300. 

https://doi.org/10.71222/1aqrg398
https://doi.org/10.1145/3583120.3589838
https://doi.org/10.1016/j.jenvman.2024.122477
https://doi.org/10.36227/techrxiv.173603336.69370585/v1
https://doi.org/10.48550/arXiv.2411.15763
https://doi.org/10.36227/techrxiv.173603149.94954703/v1
https://doi.org/10.1016/j.bioactmat.2023.02.009
https://doi.org/10.48550/arXiv.2404.09077
https://doi.org/10.54254/2755-2721/104/20241065
https://doi.org/10.1145/3696687.3696721
https://doi.org/10.48550/arXiv.2409.12376
https://doi.org/10.54254/2755-2721/116/20251752
https://doi.org/10.1109/ACCESS.2020.2983075
https://doi.org/10.1097/HJH.0000000000002793
https://doi.org/10.1109/ICSP54964.2022.9778327
https://doi.org/10.48550/arXiv.2407.05639
https://doi.org/10.48550/arXiv.2501.00300
https://doi.org/10.48550/arXiv.2501.00300


International Journal of Engineering Advances https://www.gbspress.com/index.php/IJEA 
 

Vol. 2 No. 1 (2025) 8 https://doi.org/10.71222/1aqrg398 

19. H. Wang, G. Zhang, Y. Zhao, F. Lai, W. Cui, J. Xue, ... and Y. Lin, "Rpf-eld: Regional prior fusion using early and late distillation 
for breast cancer recognition in ultrasound images," in 2024 IEEE Int. Conf. on Bioinformatics and Biomedicine (BIBM), 2024, pp. 
2605-2612. IEEE., doi: 10.1109/BIBM62325.2024.10821972. 

20. K. Xu, X. Xu, H. Wu, and R. Sun, "Venturi Aeration Systems Design and Performance Evaluation in High Density Aquaculture," 
World J. Innov. Mod. Technol., vol. 7, no. 5, Oct., 2024, doi: 10.53469/wjimt.2024.07(06).16. 

21. S. Guillas, N. Glover, and L. Malki-Epshtein, "Bayesian calibration of the constants of the k–ε turbulence model for a CFD model 
of street canyon flow," Comput. Methods Appl. Mech. Eng., vol. 279, pp. 536-553, 2014, doi: 10.1016/j.cma.2014.06.008. 

22. Y. Wang, M. Shen, L. Wang, Y. Wen, and H. Cai, "Comparative Modulation of Immune Responses and Inflammation by n-6 
and n-3 Polyunsaturated Fatty Acids in Oxylipin-Mediated Pathways," World J. Innov. Mod. Technol., vol. 7, no. 4, Aug., 2024., 
doi: 10.53469/wjimt.2024.07(05).17. 

23. M. Hallmann, B. Schleich, and S. Wartzack, "From tolerance allocation to tolerance-cost optimization: a comprehensive litera-
ture review," Int. J. Adv. Manuf. Technol., vol. 107, no. 11, pp. 4859-4912, 2020, doi: 10.1007/s00170-020-05254-5. 

24. J. B. Qiao, Q. Q. Fan, L. Xing, P. F. Cui, Y. J. He, J. C. Zhu, et al., "Vitamin A-decorated biocompatible micelles for chemogene 
therapy of liver fibrosis," J. Control. Release, vol. 283, pp. 113-125, 2018, doi: 10.1016/j.jconrel.2018.05.032. 

25. G. Qu, S. Hou, D. Qu, C. Tian, J. Zhu, L. Xue, et al., "Self-assembled micelles based on N-octyl-N’-phthalyl-O-phosphoryl chi-
tosan derivative as an effective oral carrier of paclitaxel," Carbohydr. Polym., vol. 207, pp. 428-439, 2019, doi: 10.1016/j.car-
bpol.2018.11.099. 

26. H. R. Vanaei, S. Khelladi, and A. Tcharkhtchi, "3D Printing as a Multidisciplinary Field," in Ind. Strateg. Solut. 3D Print.: Appl. 
Optim., pp. 1-24, 2024, doi: 10.1002/9781394150335.ch1. 

27. J. Zhu, R. Xie, R. Gao, Y. Zhao, N. Yodsanit, M. Zhu, et al., "Multimodal nanoimmunotherapy engages neutrophils to eliminate 
Staphylococcus aureus infections," Nat. Nanotechnol., pp. 1032-1043, 2024, doi: 10.1038/s41565-024-01648-8. 

28. I. K. Lee, R. Xie, A. Luz-Madrigal, S. Min, J. Zhu, J. Jin, et al., "Micromolded honeycomb scaffold design to support the generation 
of a bilayered RPE and photoreceptor cell construct," Bioact. Mater., vol. 30, pp. 142-153, 2023, doi: 10.1016/j.bioact-
mat.2023.07.019. 

29. J. Zhu, Y. Wu, Z. Liu, and C. Costa, "Sustainable Optimization in Supply Chain Management Using Machine Learning," Int. J. 
Manag. Sci. Res., vol. 8, no. 1, 2025, doi: 10.53469/ijomsr.2025.08(01).01. 

30. A. S. Yadav and J. L. Bhagoria, "Heat transfer and fluid flow analysis of solar air heater: A review of CFD approach," Renew. 
Sustain. Energy Rev., vol. 23, pp. 60-79, 2013, doi: 10.1016/j.rser.2013.02.035. 

31. J. Yang, T. Chen, F. Qin, M. S. Lam, and J. A. Landay, "Hybridtrak: Adding full-body tracking to vr using an off-the-shelf 
webcam," in Proc. 2022 CHI Conf. Hum. Factors Comput. Syst., no. 348, pp. 1-13, Apr., 2022, doi: 10.1145/3491102.3502045. 

32. L. Moosavi, N. Mahyuddin, N. Ab Ghafar, and M. A. Ismail, "Thermal performance of atria: An overview of natural ventilation 
effective designs," Renew. Sustain. Energy Rev., vol. 34, pp. 654-670, 2014, doi: 10.1016/j.rser.2014.02.035. 

33. Z. Li, K. Dey, M. Chowdhury, and P. Bhavsar, "Connectivity supported dynamic routing of electric vehicles in an inductively 
coupled power transfer environment," IET Intell. Transp. Syst., vol. 10, no. 5, pp. 370-377, 2016, doi: 10.1049/iet-its.2015.0154. 

34. A. Mustakim, S. N. Islam, R. Ahamed, M. Salehin, and M. M. Ehsan, "Numerical assessment of advanced thermo-hydrodynamic 
characteristics of nanofluid inside a helically featured straight pipe," Int. J. Thermofluids, vol. 21, pp. 100591, Feb. 2024, doi: 
10.1016/j.ijft.2024.100591. 

35. Z. Liu, C. Costa, and Y. Wu, "Data-driven optimization of production efficiency and resilience in global supply chains," World 
J. Innov. Mod. Technol., vol. 7, no. 5, Oct. 2024., doi: 10.53469/wjimt.2024.07(05).05. 

36. V. K. Vijetha, D. Lingaraju, G. Satish, R. Santhosh Reddy, and M. P. Reddy, "Fabrication of microchannel heat sink using additive 
manufacturing technology: A review," Proc. Inst. Mech. Eng. Part E: J. Process Mech. Eng., Oct. 2024, doi: 
10.1177/09544089241290631. 

37. Z. Liu, C. Costa, and Y. Wu, "Quantitative assessment of sustainable supply chain practices using life cycle and economic impact 
analysis," World J. Innov. Mod. Technol., vol. 7, no. 4, pp. 9, 2024, doi: 10.53469/wjimt.2024.07(04).09. 

38. Z. Xu, Y. Gong, Y. Zhou, Q. Bao, and W. Qian, "Enhancing kubernetes automated scheduling with deep learning and reinforce-
ment techniques for large-scale cloud computing optimization," in Proc. 9th Int. Symp. Adv. Electr. Electron. Comput. Eng. 
(ISAEECE), Oct. 2024, doi: 10.1117/12.3034052. 

39. Z. Liu, C. Costa, and Y. Wu, "Leveraging data-driven insights to enhance supplier performance and supply chain resilience," 
World J. Innov. Mod. Technol., vol. 7, no. 4, pp. 7, Aug. 2024, doi: 10.53469/wjimt.2024.07(05).15. 

40. Y. Sun and J. Ortiz, "Rapid Review of Generative AI in Smart Medical Applications," arXiv preprint arXiv:2406.06627, 2024, doi: 
10.48550/arXiv.2406.06627. 

41. C. Li, Z. Y. Liu, X. Y. Fang, and Y. B. Guo, “Residual stress in metal additive manufacturing,” Procedia CIRP, vol. 71, pp. 348-
353, 2018, doi: 10.1016/j.procir.2018.05.039. 

 
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual au-
thor(s) and contributor(s) and not of GBP and/or the editor(s). GBP and/or the editor(s) disclaim responsibility for any injury to 
people or property resulting from any ideas, methods, instructions or products referred to in the content. 

https://doi.org/10.71222/1aqrg398
https://doi.org/10.1109/BIBM62325.2024.10821972
https://doi.org/10.53469/wjimt.2024.07(06).16
https://doi.org/10.1016/j.cma.2014.06.008
https://doi.org/10.53469/wjimt.2024.07(05).17
https://doi.org/10.1007/s00170-020-05254-5
https://doi.org/10.1016/j.jconrel.2018.05.032
https://doi.org/10.1016/j.carbpol.2018.11.099
https://doi.org/10.1016/j.carbpol.2018.11.099
https://doi.org/10.1002/9781394150335.ch1
https://doi.org/10.1038/s41565-024-01648-8
https://doi.org/10.1016/j.bioactmat.2023.07.019
https://doi.org/10.1016/j.bioactmat.2023.07.019
https://doi.org/10.53469/ijomsr.2025.08(01).01
https://doi.org/10.1016/j.rser.2013.02.035
https://doi.org/10.1145/3491102.3502045
https://doi.org/10.1016/j.rser.2014.02.035
https://doi.org/10.1049/iet-its.2015.0154
https://doi.org/10.1016/j.ijft.2024.100591
https://doi.org/10.53469/wjimt.2024.07(05).05
https://doi.org/10.1177/09544089241290631
https://doi.org/10.53469/wjimt.2024.07(04).09
https://doi.org/10.1117/12.3034052
https://doi.org/10.53469/wjimt.2024.07(05).15
https://doi.org/10.48550/arXiv.2406.06627
https://doi/
https://doi.org/10.1016/j.procir.2018.05.039

	1. Introduction
	1.1. Research Contributions

	2. Materials and Methods
	2.1. Design Optimization Framework
	2.2. CFD Simulation Analysis
	2.3. Experimental Validation
	2.4. Additive Manufacturing Constraints

	3. Results and Discussion
	3.1. Enhanced Temperature Distribution and Thermal Uniformity
	3.2. Multi-Scale Evaluation of Cooling Performance Across Different Airflow Conditions
	3.3. Quantifying Manufacturing Deviations and Their Impact on Thermal Performance

	4. Conclusion
	References

