Electromagnetic Compatibility Design and Optimization Strategies for High-Frequency Ultrasonic Power Supplies
DOI:
https://doi.org/10.71222/e0y0wa54Keywords:
high-frequency ultrasonic power supply, electromagnetic compatibility, three-stage EMI filter, electromagnetic interference, filter designAbstract
Electromagnetic compatibility (EMC) design of high-frequency ultrasonic power supplies is crucial for ensuring their performance and reliability. This review discusses common EMC design strategies for high-frequency ultrasonic power supplies, including shielding design, grounding and electromagnetic isolation, and layout optimization. Special emphasis is placed on the role of the three-stage EMI filter in reducing electromagnetic interference (EMI) and improving power supply performance. Through a detailed analysis of the filter design, its effectiveness in suppressing low, medium, and high-frequency noise is demonstrated. Additionally, the paper explores the application of novel materials and technologies for EMC optimization and looks ahead to future development trends.
References
1. W. Qiu, Y. Yu, F. K. Tsang and L. Sun, "A multifunctional, reconfigurable pulse generator for high-frequency ultrasound imaging," IEEE Trans. Ultrason. Ferroelectr. Frequency Control, vol. 59, no. 7, pp. 1558-1567, July 2012, doi: 10.1109/TUFFC.2012.2355.
2. Q. U. Baida, Liu Huihong, and Wang Tianqiu, "Intelligent Ultrasonic Power Supply Based on HPWM," Br. J. Appl. Sci. Technol., vol. 8, 2014, doi: 10.9734/BJAST/2014/6717.
3. H. Kifune and Y. Hatanaka, "Development of the high frequency power supply for ultrasonic homogenizer and generation of emulsified fuel oil with water," Mar. Eng., vol. 36, no. 6, pp. 391-400, 2001, doi: 10.5988/jime.36.391.
4. Y. Zao, O. Qi, C. Jiawei, Z. Xinglan, and H. Shuaicheng, "Design and implementation of improved LsCpLp resonant circuit for power supply for high-power electromagnetic acoustic transducer excitation," Rev. Sci. Instrum., vol. 8, p. 084707, 2017, doi: 10.1063/1.4999446.
5. T. M. Zhang, Z. Y. Xie, and J. T. Zhang, "A novel ultrasonic motor driver based on two-phase PWM signals," Adv. Mater. Res., vols. 189-193, pp. 1543-1546, 2011, doi: 10.4028/www.scientific.net/AMR.189-193.1543.
6. Y. Chen, Z. Luo, X. Shi, Y. Jiang, Y. Zhang, and Z. Xu, "Liquid metal-encapsulated spherical Al2O3/PVA aerogel composites for high-efficiency electromagnetic interference shielding and enhanced mechanical properties," Mater. Sci. Eng. B, p. 118062, 2025, doi: 10.1016/j.mseb.2025.118062.
7. R. Otin, "ERMES 20.0: Open-source finite element tool for computational electromagnetics in the frequency domain," Comput. Phys. Commun., p. 109521, 2025, doi: 10.1016/j.cpc.2025.109521.
8. A. O. Belousov and V. O. Gordeyeva, "Optimization of protective devices with modal phenomena using global optimization algorithms," Math. Models Comput. Simul., suppl. 1, pp. S12-S35, 2025, doi: 10.1134/S2070048224700777.
9. A. Gallarreta, J. González Ramos, I. Fernández, I. Angulo, C. Lavenu, S. Gouraud, and A. Arrinda, "On the definition of measurement use cases for the assessment of LV grid emissions in the supraharmonic (2–500 kHz) region," Electric Power Syst. Res., p. 111459, 2025, doi: 10.1016/j.epsr.2025.111459.
10. A. K. Katiyar, A. Prakash, and S. K. Dubey, "Magnetic field generator for the calibration of magnetometers and electro-magnetic compatibility (EMC) and electromagnetic interference (EMI) compliance," Instrum. Sci. Technol., vol. 2, pp. 141-156, 2025, doi: 10.1080/10739149.2024.2362195.
11. J. Dong, C. Liu, H. Cheng, C. Jiang, B. Zhou, M. Huang, and Y. Feng, "Recent progress of Ti3C2Tx MXene-based layered films for electromagnetic interference shielding," J. Mater. Sci. Technol., pp. 131-149, 2025, doi: 10.1016/j.jmst.2024.10.032.
12. A. Mishra and S. K. Dubey, "EMC/EMI compliance for electromagnetic field measurement: An overview," MAPAN, pre-publish, pp. 1-13, 2025, doi: 10.1007/s12647-024-00793-8.
13. A. A. Abu Sanad, M. N. Mahmud, M. F. Ain, M. A. B. Ahmad, N. Z. B. Yahaya, and Z. Mohamad Ariff, "Theory, modeling, measurement, and testing of electromagnetic absorbers: A review," Phys. Status Solidi A, vol. 221, no. 4, p. 2300828, 2024, doi: 10.1002/pssa.202300828.
14. T. H. Elagib, N. A. Kabbashi, M. Z. Alam, E. A. Hassan, M. E. Mirghani, and N. H. Abdurahman, "Dual nitro-gen-sulfur-doping induce microwave absorption and EMI shielding in nanocomposites based on graphene," J. Adv. Dielectrics, vol. 14, no. 5, pp. 2350029, 2024, doi: 10.1142/S2010135X23500297.
15. Z. Pan, Y. Liu, D. Ren, X. Zhao, J. Yang, B. L. Nie, and P. Du, "A MOSFET EMC modeling method based on electrical char-acteristic measurement and simplex optimization and particle swarm optimization," Int. J. Circuit Theory Appl., vol. 52, no. 6, pp. 2936-2955, 2024, doi: 10.1002/cta.3856.