Adapting Architecture to Climate: Exploring Climate-Responsive Strategies Across U.S. Cities
DOI:
https://doi.org/10.71222/qca5ng14Keywords:
climate-adaptive design, Köppen climate system, Givoni’s psychrometric diagram, parametric frameworkAbstract
As energy consumption concerns continue to grow in the built environment, there is an increasing demand for design solutions that are responsive to local climate conditions. This study conducts an in-depth examination of the climate profiles of twelve U.S. cities, categorized according to the Köppen climate classification system, utilizing a parametric platform to assess suitable passive design strategies. By evaluating the effectiveness of different passive approaches across diverse climate zones, this paper provides actionable recommendations for incorporating climate-responsive design principles in architecture. The research establishes theoretical models that connect climatic variables with corresponding passive design techniques, thereby contributing to the evolution of passive design theory. Through this, the study advocates for a data-driven, climate-sensitive methodology that aligns with the growing emphasis on sustainability in modern architecture.
References
1. P. Rohdin, A. Molin, and B. Moshfegh, “Experiences from nine passive houses in Sweden – Indoor thermal environment and energy use,” Build. Environ., vol. 71, pp. 176–185, Jan. 2014, doi: 10.1016/j.buildenv.2013.09.017.
2. E. Rodriguez-Ubinas et al., “Passive design strategies and performance of Net Energy Plus Houses,” Energy Build., vol. 83, pp. 10–22, Nov. 2014, doi: 10.1016/j.enbuild.2014.03.074.
3. E. Mushtaha et al., “The impact of passive design strategies on cooling loads of buildings in temperate climate,” Case Stud. Therm. Eng., vol. 28, p. 101588, Dec. 2021, doi: 10.1016/j.csite.2021.101588.
4. I. Ridley et al., “The monitored performance of the first new London dwelling certified to the Passive House standard,” Energy Build., vol. 63, pp. 67–78, Aug. 2013, doi: 10.1016/j.enbuild.2013.03.052.
5. H. Zhang, H. Wang, and X. Zhou, “Applicability research on passive design of residential buildings in hot summer and cold winter zone in China,” IOP Conf. Ser. Earth Environ. Sci., vol. 61, p. 012066, Apr. 2017, doi: 10.1088/1755-1315/61/1/012066.
6. S. Diddi et al., “BEE_Handbook of Replicable Designs for Energy Efficient Residential Buildings.pdf.”
7. M.-M. Fernandez-Antolin, J. Del Río, V. Costanzo, F. Nocera, and R.-A. Gonzalez-Lezcano, “Passive Design Strategies for Residential Buildings in Different Spanish Climate Zones,” Sustainability, vol. 11, no. 18, p. 4816, Sep. 2019, doi: 10.3390/su11184816.
8. “WORLD MAPS OF KÖPPEN-GEIGER CLIMATE CLASSIFICATION.” [Online]. Available: https://koeppen-geiger.vu-wien.ac.at/.
9. H. S. Bala, B. Li, and C. Du, “Bioclimatic design strategy in hot summer and cold winter region of China,” Int. J. Res. Appl. Sci. Eng. Technol., 2023, doi: 10.22214/ijraset.2023.57081.
10. J. C. Lam, L. Yang, and J. Liu, “Development of passive design zones in China using bioclimatic approach,” Energy Conversion and Management, vol. 47, no. 6, pp. 746–762, 2006, doi: 10.1016/j.enconman.2005.05.025.
11. S. V. Szokolay, “Climate analysis based on the psychrometric chart,” Int. J. Ambient Energy, vol. 7, no. 4, pp. 171–182, Oct. 1986, doi: 10.1080/01430750.1986.9675499.
12. E. Naboni, M. Meloni, S. Coccolo, J. Kaempf, and J.-L. Scartezzini, “An overview of simulation tools for predicting the mean radiant temperature in an outdoor space,” Energy Procedia, vol. 122, pp. 1111–1116, Sep. 2017, doi: 10.1016/j.egypro.2017.07.471.
13. Y. I. Ibrahim, T. Kershaw, and P. Shepherd, “A methodology for modelling microclimate: A Ladybug-tools and ENVI-met verification study,” in Proceedings of the 35th PLEA Conference Sustainable Architecture and Urban Design, A Coruña, Spain, 2020.
14. F. Manzano-Agugliaro, F. G. Montoya, A. Sabio-Ortega, and A. García-Cruz, “Review of bioclimatic architecture strategies for achieving thermal comfort,” Renew. Sustain. Energy Rev., vol. 49, pp. 736–755, Sep. 2015, doi: 10.1016/j.rser.2015.04.095.
15. O. Amer, R. Boukhanouf, and H. G. Ibrahim, “A Review of Evaporative Cooling Technologies,” Int. J. Environ. Sci. Dev., vol. 6, no. 2, pp. 111–117, 2015, doi: 10.7763/IJESD.2015.V6.571.
16. M. M. AboulNaga and S. N. Abdrabboh, “Improving night ventilation into low-rise buildings in hot-arid climates exploring a combined wall–roof solar chimney,” Renew. Energy, vol. 19, no. 1–2, pp. 47–54, Jan. 2000, doi: 10.1016/S0960-1481(99)00014-2.
17. S. Amos-Abanyie, F. O. Akuffo, and V. Kutin-Sanwu, “Effects of Thermal Mass, Window Size, and Night‐Time Ventilation on Peak Indoor Air Temperature in the Warm‐Humid Climate of Ghana,” Sci. World J., vol. 2013, no. 1, p. 621095, Jan. 2013, doi: 10.1155/2013/621095.
18. G. Fraisse, K. Johannes, V. Trillat-Berdal, and G. Achard, “The use of a heavy internal wall with a ventilated air gap to store solar energy and improve summer comfort in timber frame houses,” Energy Build., vol. 38, no. 4, pp. 293–302, Apr. 2006, doi: 10.1016/j.enbuild.2005.06.010.
19. A. Pasupathy, R. Velraj, and R. V. Seeniraj, “Phase change material-based building architecture for thermal management in residential and commercial establishments,” Renew. Sustain. Energy Rev., vol. 12, no. 1, pp. 39–64, Jan. 2008, doi: 10.1016/j.rser.2006.05.010.
20. E. Adeeb, A. Maqsood, A. Mushtaq, and C. H. Sohn, “Parametric study and optimization of ceiling fan blades for improved aerodynamic performance,” J. Appl. Fluid Mech., vol. 9, no. 6, pp. 2905–2916, 2016, doi: 10.29252/jafm.09.06.25808.
21. A. Jain, R. R. Upadhyay, S. Chandra, M. Saini, and S. Kale, “Experimental Investigation of the Flow Field of a Ceiling Fan,” in Volume 3, Charlotte, North Carolina, USA: ASMEDC, Jan. 2004, pp. 93–99, doi: 10.1115/HT-FED2004-56226.
22. S.-W. Hsiao, H.-H. Lin, and C.-H. Lo, “A study of thermal comfort enhancement by the optimization of airflow induced by a ceiling fan,” J. Interdiscip. Math., vol. 19, no. 4, pp. 859–891, Jul. 2016, doi: 10.1080/09720502.2016.1225935.
23. V. Lapinskienė, V. Motuzienė, R. Džiugaitė-Tumėnienė, and R. Mikučionienė, “Impact of Internal Heat Gains on Building’s Energy Performance,” in Proceedings of 10th International Conference “Environmental Engineering”, Vilnius Gediminas Technical University, Lithuania: VGTU Technika, Aug. 2017, doi: 10.3846/enviro.2017.265.
24. J. W. Lee, H. J. Jung, J. Y. Park, J. B. Lee, and Y. Yoon, “Optimization of building window system in Asian regions by analyzing solar heat gain and daylighting elements,” Renew. Energy, vol. 50, pp. 522–531, Feb. 2013, doi: 10.1016/j.renene.2012.07.029.
25. A. K. Z. M. I. Noor, A. Arif, and M. A. S. M. Zaki, “Optimization of building’s windows design for tropical climate,” Energy Procedia, vol. 105, pp. 1495–1500, 2017, doi: 10.1016/j.egypro.2017.03.407.
26. L. Finocchiaro, L. Georges, and A. G. Hestnes, “Passive solar space heating,” in Advances in Solar Heating and Cooling, Elsevier, 2016, pp. 95–116, doi: 10.1016/B978-0-08-100301-5.00006-0.
27. K. Imessad, N. A. Messaoudene, and M. Belhamel, “Performances of the Barra–Costantini passive heating system under Al-gerian climate conditions,” Renew. Energy, vol. 29, no. 3, pp. 357–367, Mar. 2004, doi: 10.1016/S0960-1481(03)00255-6.