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Abstract: Urban flooding disasters frequently occur in our country, severely affecting the national 
development process, anticipating the probability and severity of floods can effectively reduce the 
negative impacts caused by floods, the rapid progress of hydrology has accelerated the develop-
ment of flood prediction research. Currently, a lot of machine learning methods are widely applied 
in the field of flood forecasting based on hydrology, which holds great significance for social devel-
opment. First, the hydrological models currently used for flood forecasting are introduced. Then, 
the application of machine learning models in hydrology is elaborated. Finally, the problems and 
challenges faced by machine learning in flood prediction are analyzed and summarized, and pro-
spects for future flood prediction technologies are discussed.  
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1. Introduction 
Floods are one of the most destructive natural disasters, causing significant negative 

impacts on human life safety, social infrastructure, agricultural production, and socio-
economic systems. Therefore, governments around the world need to conduct accurate 
and reliable flood forecasting, while also need to develop management strategies centered 
on preventing flood disasters and reduce flood risks. How to efficiently and accurately 
simulate floods is an urgent problem that needs to be solved. This paper mainly elaborates 
on the application of machine learning methods in flood forecasting, analyzing the appli-
cations of traditional machine learning methods and neural network methods in flood 
prediction based on hydrological models. 

2. Flood Prediction Based on Machine Learning and Hydrology 
The hydrological model follows the principle of water balance and uses various 

physical equations to describe various hydrological processes such as infiltration and run-
off [1]. By integrating hydrological principles, terrain data, meteorological data, and other 
information, combined with knowledge of physics, mathematics, and hydrology, it is pos-
sible to effectively conduct quantitative analysis and prediction of floods. In hydrological 
models, terrain data is used to describe the topography and water flow paths of the wa-
tershed, while meteorological data provides meteorological elements such as rainfall and 
water evaporation, which are important components of the model input [2]. Hydrological 
models can simulate the development and evolution of different hydrological processes 
based on different model structures, such as the formation process of floods and the pre-
diction of peak discharge. By simulating hydrological responses in different scenarios, 
hydrological models can help decision-makers develop effective response measures, mit-
igate losses caused by floods, and ensure the safety of people's lives and property. 
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2.1. Hydrological Methods Based on Traditional Machine Learning 
Although hydrological models can describe hydrological conditions well, they re-

quire analysis of a large amount of terrain data and historical rainfall data [3], and the 
parameterization process of the model has significant uncertainty [4]. With the continuous 
development and improvement of machine learning technology, machine learning mod-
els have been widely used for flood prediction. 

Mathematics et al. proposed using the Autoregressive Moving Average (ARMA) 
method for hydrological prediction, and applied the ARMA model to study the temporal 
variation of reservoir water level [5]. The ARMA model performs poorly in handling non-
linear and non-stationary data, and requires data to have distinct seasonal characteristics. 
In addition, the stability of the model is highly dependent on the selection of parameters, 
and these limitations may lead to poor predictive performance. To reduce the negative 
impact of these factors, Mathematics et al. proposed using the Autoregressive Integrated 
Moving Average (ARIMA) model for prediction. The ARIMA model adds differential 
processing to the ARMA model, making it more suitable for non-seasonal data and having 
smaller errors in hydrological forecasting. Although ARMA and ARIMA models can 
make relatively accurate predictions, these models are suitable for rough seasonal fore-
casting and have large errors in short-term predictions. In order to make more accurate 
predictions, Haddad et al. proposed a framework that combines Region Of Influence (ROI) 
and Bayesian Generalized Least Squares (BGLS) [6]. Based on quantile regression tech-
nique (QRT), predicting floods in the eastern region of Australia and improving the selec-
tion of predictive variables can lead to more accurate predictions. However, for areas with 
low frequency of floods, the predicted flood levels are generally higher than the actual 
values. Kroll et al. assumed floods as random events, described the minimum annual flow 
using a probability distribution, and predicted floods using the probability distribution of 
historical water flow data [7]. However, this method is not suitable for short-term fore-
casting and relies on high-precision measurement data. It cannot make quantitative pre-
dictions and requires analysis and processing of a large amount of historical data to obtain 
reliable long-term forecasting results. 

Considering the strong randomness and high complexity of hydrological data, re-
searchers adopted a combined prediction method of wavelet transform and Support Vec-
tor Machine (SVM) to train and analyze the data in the Tunxi River Basin [8]. The basic 
idea of SVM is to use linear models to solve nonlinear problems [9], mapping the input 
space to a high-dimensional space. 

Random forests perform well in processing high-dimensional and large datasets, 
without the need for feature scaling and data normalization, and have high accuracy and 
stability. Due to the advantages of the random forest method, Pao Shan Yu et al. used 
historical data, grid position (latitude and longitude of the study area), and grid elevation 
data of grid based radar derived rainfall data as input variables, and grid based radar 
derived data as output variables for model training [10]. Two methods, Single mode Fore-
casting Model (SMFM) based on random forest and SMFM based on SVM, were used for 
prediction. It was found that both methods had relatively accurate prediction results for 
hydrological forecasting 1-3 hours in advance. However, the author did not verify the 
feasibility of the model in complex environments, nor did they consider the impact of 
neighboring areas on flood levels in the study area. 

2.2. Hydrological Method Based on Neural Network 
Artificial Neural Network (ANN) is capable of solving complex nonlinear relation-

ships between input and output sets, and has flexible mathematical computing capabili-
ties. It is widely used in the fields of water flow prediction and precipitation prediction. 
Adamowski et al. used artificial neural networks to perform regression and time series 
analysis on hydrological data in the Ottawa area of Canada [11]. The results showed that 
the performance of artificial neural networks in prediction was superior to that of multiple 
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linear regression methods. However, artificial neural networks have poor ability to pro-
cess non-stationary data, resulting in significant prediction errors. Shiri et al. proposed 
combining wavelet analysis (WA) with artificial neural network methods to obtain a WA-
ANN prediction model, which can make accurate long-term and short-term predictions 
[12]. By coupling the two models for prediction, it is usually better than using autoregres-
sive integrated moving average (ARIMA) and artificial neural network separately. 

Lu Liu et al. investigated the flood forecasting capabilities of the SIMHYD hydrolog-
ical model and the Long Short-Term Memory (LSTM) neural network model in 232 basins 
under different climatic conditions [13]. In typical flood evolution scenarios, compared 
with traditional hydrological models, LSTM neural networks demonstrated better predic-
tive performance with longer training periods and shorter validation periods. In extreme 
cases, the predictive ability of LSTM models may be lower than that of SIMHYD hydro-
logical models, because LSTM lacks data for extreme situations during the training pro-
cess. Chang F-J et al. used rainfall and Floodwater Storage Pond (FSP) data for flood pre-
diction, mainly using static neural networks: Back Propagation Neural Network (BPNN) 
[14], Dynamic Recursive Neural Network (Elman NN), and Nonlinear Autoregressive 
with eXogenous Input Network (NARX network) for prediction, the network structure is 
shown in Figure 1. Artificial neural networks have the ability to approximate nonlinearity, 
and are therefore often used for research such as flood prediction and rainfall prediction 
[15]. 

 

(a) Backpropagation neural network 

 

(b) Elman neural network 

 
(c) Nonlinear autoregressive with eXogenous input (NARX) network 

Figure 1. Three network architectures: BPNN, Elman NN, and NARX [14]. 
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All three types of neural networks can perform well in urban hydrological prediction, 
but due to the adaptive selection of time delay values and consideration of historical data 
and external factors, NARX network can effectively alleviate the delay problem, while 
BPNN and Elman NN cannot effectively alleviate this problem. Compared with the other 
two network models, the NARX network has a wider applicability and higher prediction 
accuracy. These three models can ensure a high degree of consistency with the observed 
values in a shorter prediction time, but the error is larger when the prediction time is 
longer. Yen Ming et al. used RNN to predict the urban sewage water level at both meas-
ured and unmeasured points, which can accurately predict the water level at the meas-
ured points [16]. For unmeasured points without historical data support, the Storm Water 
Management Model (SWMM) is used to predict water levels by combining information 
from surrounding measured points. Accurate prediction results can also be obtained at 
unmeasured points. Overall, although RNN can predict the main trend of water level 
changes, it significantly underestimates the peak water volume. The neural network ar-
chitecture adopted by Yen Ming et al. is shown in Figure 2. 

 
Figure 2. The RNN neural network architecture adopted by Chiang et al [16]. 

Considering the complexity and dynamics of flash floods, Bui et al. used a deep learn-
ing neural network (DLNN) to predict flash floods in a typical mountainous area in north-
west Vietnam [17]. The model adopts a network structure containing 3 hidden layers and 
192 neurons, and the accuracy of training and prediction stages can reach over 96%. The 
DLNN model has good flexibility and generalization ability. Through experimental com-
parison, it was found that the accuracy of prediction using DLNN is higher than that of 
MLN-NN and SVM methods. The combination of GIS and DLNN can effectively improve 
the accuracy of flood prediction. The DLNN neural network architecture adopted by Bui 
et al. is shown in Figure 3. 

 
Figure 3. DLNN Neural Network Architecture for Flood Prediction [17]. 
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Due to the problems of low prediction accuracy and overfitting in traditional neural 
network models for flood prediction. Guo et al. used Convolutional Neural Networks 
(CNN) to train flood simulation data obtained from 18 rainfall flow maps in three catch-
ment areas. The topographic map and rainfall flow map were divided into several equally 
sized blocks, and each block was trained instead of training the entire catchment area [18]. 
The flood prediction time of this method is 0.5% of that of physical model-based flood 
prediction methods, and it can achieve good prediction results for rainfall events that do 
not exist in the training set. However, when the terrain being studied changes, it is neces-
sary to retrain the flood prediction model. The neural network architecture adopted by 
Guo et al. is shown in Figure 4. 

 
Figure 4. CNN based flood prediction architecture [18]. 

Lima et al. used a feedforward neural network called Extreme Learning Machine 
(ELM) for daily water volume prediction [19]. ELM is a single-layer feedforward neural 
network that has faster training speed and stronger generalization ability compared to 
traditional neural networks. When the input and output of the model exhibit a non-linear 
relationship, ELM can achieve good prediction performance through multiple training 
sessions. However, due to the random generation of weights and biases (Hidden Nodes 
Or Neurons, HN) from the input layer to the hidden layer at the beginning of ELM, if the 
initial number of randomly generated HNs is too small, the prediction error will increase 
as the training data increases. The ELM neural network structure adopted by Lima et al. 
is shown in Figure 5. 

 
Figure 5. ELM network architecture diagram adopted by Lima et al [19]. 

In summary, compared with traditional physical prediction models, data-driven hy-
drological prediction can obtain flood prediction models that meet the requirements in a 
short period of time. Although this method can accurately describe urban flood water 
level information, hydrological models often simplify hydrological processes and ignore 
complex hydrodynamic processes, lacking detailed spatial dynamic information of urban 
surface floods, such as depth and velocity, and cannot simulate changes in the physical 
characteristics of floods, such as momentum and mass. And when the training dataset is 
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limited, the model may have overfitting issues, resulting in poor performance on new, 
unseen data, thereby increasing prediction errors. 

3. Conclusion and discussion 
In summary, although the prediction method combining hydrology and machine 

learning can provide flood prediction to a certain extent, its simulation results lack accu-
rate reflection of the real physical characteristics of floods due to the neglect of the physical 
properties of fluids in hydrological models. Especially in complex scenarios, hydrological 
models often cannot capture the complex motion of floods, and when the amount of data 
is small, the prediction error is large.  

Future research should focus on addressing how to achieve accurate predictions on 
smaller datasets, how to improve the accuracy and efficiency of prediction models in com-
plex scenarios, and how to enhance the generalization ability of prediction models. Fur-
ther exploration in these areas will provide more reliable and effective methods for flood 
prediction. Meanwhile, combining the advantages of hydrology and hydrodynamics to 
develop more comprehensive and accurate prediction methods is also an important di-
rection for future research. 
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