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Abstract: With the continuous development of medical imaging technology, medical image seg-
mentation is playing an increasingly important role in clinical diagnosis and treatment planning. 
However, traditional deep learning methods, while ensuring segmentation accuracy, often suffer 
from issues such as large model size and high computational complexity. To address these chal-
lenges, this paper proposes a medical image segmentation algorithm based on a lightweight atten-
tion convolutional neural network. By incorporating lightweight convolution modules (such as 
depthwise separable convolutions and group convolutions), the proposed algorithm effectively re-
duces the number of model parameters and computational burden. At the same time, it integrates 
attention mechanisms — including channel attention and spatial attention — to enhance feature 
representation, thereby achieving higher accuracy and robustness across various medical image 
segmentation tasks. Experiments conducted on several public datasets, in comparison with main-
stream methods, demonstrate significant advantages in both segmentation precision and opera-
tional efficiency. The research presented in this paper provides new ideas and references for the 
development of lightweight medical image segmentation techniques. 
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1. Introduction 
Medical image segmentation is essential for computer-aided diagnosis and treatment 

planning. With advances in imaging devices and an explosion of data, accurately extract-
ing target organs or lesions from complex backgrounds has become critical for improving 
clinical outcomes. While traditional segmentation methods have achieved notable accu-
racy and robustness, they often face challenges such as large model sizes, high computa-
tional complexity, and insufficient real-time performance — issues that are especially 
problematic in resource-constrained settings. To address these challenges, we propose a 
segmentation algorithm based on a lightweight attention convolutional neural network. 
Built on an encoder–decoder framework, our approach incorporates lightweight designs 
like depthwise separable and group convolutions to significantly reduce the network’s 
parameter count and computational burden. Additionally, attention mechanisms are em-
ployed to weight features, enhancing the network’s ability to capture critical lesion re-
gions and anatomical details. This combination achieves high-precision segmentation 
across multiple modalities while maintaining fast inference speeds. Experimental results 
on several datasets show high IoU and Dice coefficients, confirming the method’s effec-
tiveness for clinical applications. Overall, our work provides a balanced solution for effi-
cient and accurate medical image segmentation, paving the way for the broader deploy-
ment of intelligent medical technologies in clinical practice and suggesting new directions 
for future research [1]. 
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2. Medical Image Segmentation Techniques: Concepts and Applications 
2.1. Overview of Medical Image Segmentation Techniques 

Medical image segmentation is crucial for clinical diagnosis and treatment planning, 
aiming to accurately extract regions of interest — such as organs or lesions — from com-
plex backgrounds. This process provides precise information for pathological analysis, 
surgical planning, and treatment evaluation. With advances in imaging equipment and 
techniques, modalities like X-ray, CT, MRI, and ultrasound now offer rich data with high 
resolution, but also present significant challenges in algorithm design. Different imaging 
modalities have unique characteristics. For instance, X-ray images primarily show the out-
lines of bones and high-density tissues, CT scans provide detailed tissue density infor-
mation, MRI excels at soft tissue contrast, and ultrasound images are often affected by 
noise and artifacts. Consequently, segmentation algorithms must be both general and 
adaptable enough to leverage the unique features of each modality [2]. 

Figure 1. outlines a typical workflow for medical image segmentation. First, the orig-
inal image is acquired based on clinical needs (e.g., musculoskeletal or chest X-rays). Next, 
the region of interest (ROI) is localized by focusing on key areas such as bone structures 
or lung fields. Then, pixel-level segmentation is performed to generate binary or multi-
class masks that highlight the anatomical structures or lesions. Finally, ground truth im-
ages — annotated manually or semi-automatically — are used for training, validation, 
and evaluation. In musculoskeletal X-rays, segmentation focuses on bones or joints for 
fracture detection and arthritis assessment, while chest X-rays require precise delineation 
of lung fields and lesions for early disease detection [3]. The segmentation process not 
only minimizes background interference but also accentuates important features, facili-
tating further quantitative analysis and 3D reconstruction. Deep learning, particularly 
convolutional neural networks (CNNs), has made significant strides in this field by 
providing end-to-end learning and robust feature extraction. However, traditional large-
scale CNNs face challenges such as high computational demands, excessive parameters, 
and dependence on hardware resources — issues that hinder real-time clinical use. This 
has led to a growing interest in lightweight network architectures using depthwise sepa-
rable and group convolutions to reduce computational and storage overhead without 
compromising accuracy. Simultaneously, attention mechanisms have shown promise by 
dynamically weighting channels or spatial regions, thereby enhancing the focus on key 
features even in noisy or complex images. Combining lightweight designs with attention 
mechanisms is a current research focus aimed at maximizing segmentation performance 
while minimizing resource consumption. Overall, medical image segmentation has 
evolved from traditional methods to high-precision deep learning models. Ongoing inno-
vations continue to address the challenges posed by diverse medical images and clinical 
demands, supporting the advancement of precision medicine and intelligent healthcare 
[4]. 
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Figure 1: Example Workflow for Segmenting Different Types of X-ray Images 

2.2. Application of the Lightweight Attention Convolutional Neural Network in Medical Image 
Segmentation 

In medical image segmentation, a lightweight attention convolutional neural net-
work effectively balances high accuracy with low computational and storage overhead. 
As shown in Figure 2, the model is built on an encoder–decoder framework that integrates 
lightweight convolution and attention modules. This integration allows the network to 
efficiently capture key features and suppress redundant information across various med-
ical imaging scenarios. The network begins by passing the input image through a series 
of convolution blocks and pooling operations, which progressively reduce spatial resolu-
tion while extracting multi-level semantic features. Unlike traditional convolutional net-
works, the lightweight design uses strategies such as depthwise separable convolutions 
and group convolutions to significantly lower the number of parameters and computa-
tional load [5]. Batch normalization and activation functions are applied to ensure stable 
training and prevent redundancy from excessive operators. Following these convolu-
tional layers, the feature maps are processed by several attention blocks. These blocks em-
ploy global average pooling and fully connected layers to re-weight feature channels or 
spatial positions, emphasizing critical features while diminishing irrelevant or noisy re-
gions. This results in robust segmentation performance, even with complex backgrounds 
and different imaging modalities. The decoder then restores spatial resolution through 
upsampling and feature fusion, using skip connections to retain fine details from earlier 
layers for richer segmentation outputs [6]. 
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Figure 2. Illustration of the overall architecture of a lightweight attention convolutional neural net-
work. 

Figure 2 illustrates that the full network comprises about 2.95 million trainable pa-
rameters, with non-trainable parameters around 4608 and a model file size of approxi-
mately 35 MB. Compared with conventional large-scale segmentation networks, this light-
weight attention network is ideally suited for deployment in resource-constrained envi-
ronments, such as portable medical devices or real-time applications. Its design achieves 
a balance between efficiency and accuracy, making it highly adaptable to various segmen-
tation tasks including identification of bones, lung fields, hearts, and other organs or le-
sions, thus providing strong technical support for intelligent healthcare [7]. 

3. Methodology 
3.1. Overall Framework Design 

In medical image segmentation, attention mechanisms are crucial for enabling net-
works to focus on key features while keeping computational demands low. Unlike tradi-
tional recurrent or convolution operations, attention mechanisms allow flexible allocation 
of computational resources by adaptively weighting important regions and suppressing 
noise. This enhances feature representation and improves the precise localization of target 
tissues or lesions within a lightweight structure [8]. 

Figure 3 illustrates these benefits. Part (a) shows RNNsearch-style attention that pro-
gressively focuses on key content by weighting sequence context, whereas part (b) depicts 
self-attention in image processing. Self-attention establishes mappings among queries (Q), 
keys (K), and values (V) to capture global features directly, without relying on sequential 
scanning. This facilitates parallel computation and better handles long-distance depend-
encies, which is particularly beneficial for identifying complex lesions and widespread 
feature correlations. In our proposed lightweight attention convolutional neural network, 
the attention mechanism is applied between the encoder and decoder to re-weight feature 
maps. By incorporating self-attention modules, the network adaptively selects and ampli-
fies important features along both the channel and spatial dimensions while extracting 
high-level semantic information. This approach maintains high segmentation accuracy 
even in complex imaging scenarios and supports fast inference due to its non-recurrent 
structure. Moreover, the lightweight design and attention mechanisms complement each 
other [9]. Lightweight convolutions — such as depthwise separable and group convolu-
tions — significantly reduce the number of parameters and computational load, making 
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it feasible to run deep segmentation models on resource-constrained hardware. Mean-
while, self-attention modules boost the network’s ability to capture critical information 
with minimal parameter increase. Together, these strategies effectively balance segmen-
tation accuracy and efficiency, unlocking the network’s potential for clinical diagnosis and 
treatment planning. Subsequent sections will detail performance evaluations on various 
datasets and present ablation experiments that validate the contributions of both light-
weight convolution and attention mechanisms [10]. 

 
Figure 3. Schematic Diagram of Feature Extraction Comparison Based on Sequence Modeling and 
Self-Attention. 

3.2. Lightweight Module Design 
Large deep convolutional networks offer excellent feature extraction but often have 

high parameter counts and computational costs that hinder real-time clinical applications. 
To overcome this, our study integrates various lightweight convolution strategies to re-
duce computational overhead while maintaining or improving segmentation accuracy. 
We primarily employ depthwise separable convolutions and group convolutions. Depth-
wise separable convolutions split a standard convolution into a depthwise and a 
pointwise convolution, significantly reducing the number of parameters and multiply-
add operations. Group convolutions partition input features into groups and perform sep-
arate convolutions, lowering inter-channel redundancy for more efficient feature extrac-
tion. Both methods decrease dependency on computational resources, enabling high effi-
ciency even on mobile devices or low-compute environments. In our network, both the 
encoder and decoder are constructed using lightweight convolutional units. Compared to 
traditional convolution layers, these units dramatically reduce trainable parameters and 
storage overhead, and are paired with batch normalization and nonlinear activations (e.g., 
ReLU or Leaky ReLU) to ensure stable training and balanced feature distributions. In the 
encoder, lightweight convolutions focus on quickly compressing spatial dimensions and 
extracting basic features, while the decoder balances the upsampling of high-level seman-
tic information with restoring low-level details. By using depthwise separable or group 
convolutions on both ends, our approach reduces overall parameters while preserving 
image detail capture, thereby supporting effective attention-based feature re-weighting 
later. Additionally, skip connections and residual structures are integrated at key posi-
tions to facilitate gradient propagation and mitigate training challenges from increased 
depth. Regularization techniques like dropout further suppress overfitting, enhancing 
generalization. Overall, the lightweight module design is not just about reducing load but 
achieving a balanced trade-off between efficiency and segmentation accuracy, making our 
network a feasible and flexible solution for clinical medical image segmentation. 
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3.3. Loss Functions and Optimization Strategy 
In medical image segmentation tasks, selecting an appropriate loss function is critical 

for enhancing both the training effectiveness and segmentation accuracy of the model. 
Given that medical images often involve imbalanced data (e.g., lesion regions may occupy 
a much smaller area compared to normal tissues) and require high precision, a single loss 
function is often insufficient to capture both global and local features adequately. There-
fore, this study incorporates multiple forms of loss functions — such as cross-entropy and 
Dice coefficient — and further reinforces focus on the target regions by applying 
weighting or combined strategies. Concurrently, in terms of optimization strategy, adap-
tive gradient descent methods (such as Adam) or stochastic gradient descent (SGD) with 
momentum are employed to achieve stable convergence within a relatively short training 
period. For clarity, the following are three typical loss function formulas: weighted cross-
entropy loss, Dice loss, and a combined loss that fuses both. In practical applications, the 
weighting coefficients can be adjusted or additional regularization terms added depend-
ing on the data distribution and segmentation requirements. Firstly, to address the issue 
of class imbalance, this study applies a weighting scheme to the traditional cross-entropy 
loss. For each class cc, a weight wcw_c is assigned, and the cross-entropy loss is defined 
as shown in Formula 1: 

LCE = −∑ wc
C
c=1 yclog(y�c)          (1) 

Where C is the number of classes, yc denotes the one-hot encoded ground truth label, 
y�c is the network’s predicted output, and wc balances the influence of each class in the 
loss calculation. When a certain class is underrepresented in the training set or is particu-
larly critical for segmentation quality, its weight can be increased appropriately. Secondly, 
to emphasize the accurate capture of target region boundaries and mitigate class imbal-
ance, a Dice coefficient-related loss is often employed. Let pip_i represent the prediction 
for the i-th pixel, gig_i the corresponding ground truth label, N the total number of pixels, 
and ϵ a smoothing term. The Dice loss is defined as shown in Formula 2: 

LDice = 1− 2∑ pigi+ϵ
N
i=1

∑ piN
i=1 +∑ gi+ϵN

i=1
          (2) 

This loss function is very common in medical image segmentation as it directly re-
flects the degree of overlap between the predicted and ground truth regions. Finally, to 
combine the advantages of weighted cross-entropy and Dice loss, this study fuses the two 
through a weighted sum, resulting in a composite loss function as shown in Formula 3: 

L = αLCE + βLDice            (3) 
Where α and β are hyperparameters used to balance the contributions of the 

weighted cross-entropy and Dice losses in the overall optimization objective. By tuning 
these coefficients on different stages or datasets, the model can achieve an optimal trade-
off between edge contour recognition and overall accuracy. Regarding the optimization 
strategy, this study primarily adopts adaptive optimization algorithms based on gradient 
descent (such as Adam) combined with momentum and learning rate decay strategies to 
accelerate convergence and reduce oscillations. Alternatively, stochastic gradient descent 
(SGD) with momentum or RMSProp can be used, depending on the data scale and net-
work architecture. During training, monitoring the loss on the validation set and evalua-
tion metrics (such as Dice coefficient and IoU) allows for early stopping or adjustment of 
the learning rate to obtain a more stable model performance and prevent overfitting. 
Through the careful design and combination of these loss functions and optimization 
strategies, the model is able to achieve higher segmentation accuracy and robustness 
when facing various types of medical images. 
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4. Experimental Design and Results Analysis 
4.1. Dataset Introduction and Preprocessing 

In this study, we utilized multiple publicly available medical image datasets to thor-
oughly validate the performance of the proposed lightweight attention convolutional neu-
ral network for segmentation tasks. Specifically, three representative medical imaging da-
tasets were selected, covering chest X-ray images, abdominal CT images, and skin lesion 
images. Each dataset includes rich annotation information, which is suitable for training 
deep learning models as well as for quantitative evaluation of segmentation performance. 
Table 1 summarizes the key characteristics of each dataset, including the number of im-
ages, resolution, image type, annotation details, and data source. 

Table 1. Overview of Datasets. 

Dataset 
Name 

Number 
of Images 

Image 
Resolu-

tion 

Image 
Type Annotation Details Data Source 

Chest X-ray 
Dataset 1200 1024 × 

1024 X-ray 
Annotations for lung 

fields, heart, and lesion 
areas 

Public clinical data-
base 

Abdominal 
CT Dataset 800 512 × 512 CT 

Annotations for liver, 
spleen, kidneys, and 

other organs 

Open medical imag-
ing resource plat-

form 

Skin Lesion 
Dataset 1000 768 × 768 Digital 

image 
Segmentation annota-
tions for lesion areas 

International skin le-
sion competition da-

taset 
For data preprocessing, a standardized procedure was applied to each dataset to en-

sure consistency and improve the model's generalization capability. First, images were 
normalized, mapping pixel values to the [0,1] range. Second, based on the original reso-
lutions, images were resized or cropped to a fixed size to facilitate batch training. For the 
abdominal CT and skin lesion images, data augmentation techniques such as random ro-
tation, translation, scaling, and horizontal flipping were also employed to increase sample 
diversity and reduce overfitting. Additionally, to address the noise issues commonly 
found in medical images, certain datasets underwent filtering and contrast enhancement 
operations, which further improved the algorithm’s ability to capture details and edge 
information. Through these preprocessing steps, high-quality, balanced, and representa-
tive training and validation datasets were constructed, providing a solid foundation for 
the subsequent experiments. 

4.2. Experimental Settings 
4.2.1. Experimental Platform and Training Parameters 

The experimental training for this study was conducted on a high-performance com-
puting server with GPU acceleration to improve computational efficiency. All models 
were run under the same hardware and software environment to ensure comparability of 
results. Table 2 details the configuration of the experimental platform. 

Table 2. Experimental Platform Configuration. 

Component Specification 
Processor (CPU) Intel Xeon Gold 6226R @ 2.90GHz (16 cores) 

Graphics Card (GPU) NVIDIA RTX A6000 (48GB) 
Memory (RAM) 256GB DDR4 

Operating System Ubuntu 20.04 LTS 
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Deep Learning Framework TensorFlow 2.8 / PyTorch 1.12 
CUDA Version 11.3 
cuDNN Version 8.2 
Python Version 3.8 

During training, hyperparameters were optimized to ensure that the model con-
verged within a reasonable timeframe and achieved optimal segmentation performance. 
The specific training parameters are listed in Table 3. 

Table 3. Training Hyperparameters. 

Parameter Value 
Input Image Size 320 × 320 × 3 

Batch Size 16 
Initial Learning Rate 0.001 
Learning Rate Decay Cosine Annealing 
Number of Epochs 100 

Optimizer Adam 
Loss Function Weighted Cross-Entropy + Dice Loss 

Weight Initialization Xavier Initialization 
Regularization L2 Regularization + Dropout (0.3) 

A cosine annealing strategy was employed to dynamically adjust the learning rate, 
providing a high learning rate in the early stages to speed up convergence and reducing 
it later to prevent oscillations and overfitting. Additionally, Xavier initialization was used 
to ensure numerical stability during the initial training phase. 

4.2.2. Evaluation Metrics 
To objectively assess the segmentation performance of the proposed model, several 

common evaluation metrics were employed, including Intersection over Union (IoU), 
Dice Similarity Coefficient (DSC), Accuracy (ACC), and Sensitivity (SEN). IoU measures 
the overlap between the predicted segmentation and the ground truth, while the Dice co-
efficient emphasizes the consistency between the prediction and the annotation. Accuracy 
evaluates the overall classification correctness, and sensitivity reflects the model’s ability 
to recall target regions.The evaluation metrics are defined by the following formulas 4-7: 

IoU = ∣P∩G∣
∣P∪G∣

             (4) 

Dice = 2∣P∩G∣
∣P∣+∣G∣

            (5) 

Accuracy = TP+TN
TP+TN+FP+FN

          (6) 

Sensitivity = TP
TP+FN

           (7) 

Here, P and G represent the predicted segmentation mask and the ground truth mask, 
respectively; TP denotes true positives, TN true negatives, FP false positives, and FN false 
negatives. During the experiments, the model was tested on the three different medical 
image datasets, and the primary evaluation metrics were recorded as shown in Figure 4. 
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Figure 4. Evaluation Metrics of the Segmentation Model on Different Datasets. 

The results indicate that the proposed lightweight attention convolutional neural net-
work achieves high IoU and Dice coefficients across all datasets, demonstrating superior 
segmentation accuracy in extracting target regions. Moreover, the accuracy and sensitivity 
metrics suggest that the model generalizes well across different types of lesion segmenta-
tion tasks. Overall, the proposed medical image segmentation algorithm provides an effi-
cient, accurate, and scalable solution for medical image analysis while significantly reduc-
ing computational complexity. 

4.3. Experimental Results 
In this section, we comprehensively evaluate the performance of the proposed light-

weight attention convolutional neural network on medical image segmentation tasks from 
multiple perspectives, including segmentation accuracy, the contribution of different 
modules, and computational efficiency, to validate the effectiveness and practicality of 
our method. First, in terms of segmentation accuracy, the model was tested on the chest 
X-ray, abdominal CT, and skin lesion datasets, and the IoU, Dice, Accuracy, and Sensitiv-
ity metrics were recorded. As shown in Figure 5, the model achieved high segmentation 
accuracy across all three datasets. Specifically, the Chest X-ray Dataset achieved an IoU of 
0.831 and a Dice coefficient of 0.902; the Abdominal CT Dataset achieved an IoU of 0.795 
and a Dice coefficient of 0.873; and the Skin Lesion Dataset achieved values of 0.812 and 
0.888, respectively. These results clearly indicate that the model consistently extracts the 
target regions from various medical images, exhibiting high overlap and overall accuracy. 
Next, to verify the specific contributions of the lightweight modules and attention mech-
anisms to the model's performance, ablation experiments were conducted. In these exper-
iments, the attention module was removed, lightweight convolutions were replaced with 
standard convolutions, and both components were removed simultaneously, with key 
segmentation metrics recorded for each configuration. As shown in Figure 5, removing 
the attention module alone resulted in an average decrease in the Dice coefficient of ap-
proximately 2.5%. Replacing lightweight convolutions with standard convolutions signif-
icantly increased the parameter count, with only a slight improvement in segmentation 
accuracy; when both components were removed, the model’s performance deteriorated 
noticeably. These results indicate that, while maintaining a lightweight model is im-
portant, the attention mechanism plays an indispensable role in enhancing segmentation 
accuracy. 
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Figure 5. Ablation Experiment Results. 

Finally, to evaluate the computational efficiency of the model for real-world deploy-
ment, the resource consumption of different model configurations was assessed, includ-
ing inference time and model size. As demonstrated in Figure 6, the full model maintained 
high accuracy while having a significantly lower parameter count and smaller file size 
compared to the version built with standard convolutions, and the inference time was also 
reduced. This confirms that the lightweight design strategy adopted in this study can sub-
stantially lower computational resource requirements in practical applications, meeting 
the demands of real-time segmentation tasks. 

 
Figure 6. Comparison of Model Computational Efficiency. 

In summary, the experimental results from multiple angles — segmentation accuracy, 
ablation studies, and computational efficiency — demonstrate that the proposed light-
weight attention convolutional neural network exhibits excellent performance in medical 
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image segmentation tasks. The model achieves high IoU and Dice coefficients across dif-
ferent datasets, and by integrating lightweight design with attention mechanisms, it suc-
cessfully reduces parameter count and computational complexity while maintaining or 
even enhancing segmentation performance. These advantages make the model highly 
promising for practical clinical applications. 

5. Conclusion 
This paper presents a medical image segmentation algorithm based on a lightweight 

attention convolutional neural network. By integrating lightweight convolution modules 
with attention mechanisms, the proposed method effectively reduces the number of 
model parameters and computational complexity while achieving outstanding segmenta-
tion performance on multiple medical image datasets. Experimental results indicate that 
the method maintains high IoU and Dice coefficients and significantly improves inference 
speed, making it suitable for real-time clinical applications in resource-constrained envi-
ronments. Future work will focus on further optimizing the lightweight design, enhanc-
ing the model’s adaptability to complex lesion structures, and exploring multi-task learn-
ing strategies for cross-modal medical image segmentation to advance the deployment of 
intelligent medical technologies. 
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