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Abstract: Degenerative disc disease (DDD) is a leading source of neck and lower back pain, espe-

cially among older adults and individuals in high‐load occupations. Clinical practice currently 

struggles to predict DDD quantitatively, delaying effective intervention. This project proposes a 

three‐stage, continuous stochastic model describing disc degeneration initiation, progression, and 

propagation to adjacent discs. By incorporating measurable disc indicators — such as height loss, 

displacement, and annulus tears — into a physics–statistics‐based framework, we derive DDD met‐

rics that estimate disc lifespans, the probability of multi‐level degeneration, and time‐to‐pain events. 

We then interpret these metrics to guide personalized decisions about whether to treat only severely 

degenerated discs or also discs likely to degenerate soon, factoring in age, occupation, and lifestyle. 

With real‐time MRI data, the model updates dynamically, strengthening its clinical relevance. Our 

findings could enhance early detection, inform optimal surgical timing, and improve outcomes for 

at‐risk populations, including Hong Kong’s aging workforce. 

Keywords: degenerative disc disease (DDD); stochastic modeling; disc degeneration; MRI; person-

alized treatment 

1. Introduction

Degenerative disc disease (DDD) represents a significant health concern due to its 

link with chronic neck and lower back pain (LBP). It arises from gradual deterioration 

within the intervertebral discs — structures in the spine that cushion vertebrae and absorb 

mechanical loads. Although the term “disease” is used, DDD can be considered part of 

the natural aging process, in which discs lose water content, and microstructural changes 

occur. Yet, this phenomenon is not limited solely to aging populations: individuals who 

frequently perform activities placing high loads on the spine — such as stevedores, com-

mercial drivers, and certain trading or industrial workers — also face elevated risk. In a 

densely populated region like Hong Kong, which is home to a large community of senior 

citizens along with occupationally vulnerable groups (for example, taxi drivers and labor-

ers), DDD is poised to become an even more prevalent source of disability and diminished 

quality of life. Despite the strong social and healthcare implications of DDD, current clin-

ical management often struggles with a lack of quantitative tools for early detection, pre-

diction, and personalized intervention. 

Many DDD patients only become aware of the condition once disc degeneration has 

progressed enough to elicit persistent pain. Typically, an individual experiences discom-

fort or sharp pain, prompting a clinical visit — possibly leading to diagnostic imaging via 

Magnetic Resonance Imaging (MRI). This scan may reveal reduced disc height, tears in 

the annulus fibrosus (AF), or visible degenerative changes such as disc bulging or dis-

placement. Yet doctors have limited capacity to forecast how or when adjacent discs might 

start or accelerate their own degeneration. While the MRI findings offer a snapshot of the 
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current state, they do not readily deliver a dynamic timeline: the subsequent progression 

of each disc remains unclear. 

In this context, a quantitative characterization of DDD could bring significant bene-

fits. By rigorously modeling each disc’s behavior — spanning how long it takes for degen-

eration to begin, how rapidly it worsens, and how it may propagate to adjacent levels — 

clinicians could receive predictive insights. They would be better able to advise a patient 

that “Disc L4-L5 is likely to develop serious pathology in the coming year,” or “Disc C5-

C6 is at moderate risk, but surgical intervention is not necessary yet.” Such data-driven 

predictions might also open the door to more personalized prevention programs (for in-

stance, physical therapy regimens targeted at fortifying certain spinal segments) or early 

interventions (like removing or replacing a disc before the onset of severe pain). 

However, establishing these predictive models is far from trivial. First, the degener-

ative processes in intervertebral discs are complex, involving changes in disc hydration, 

microcracks or tears in the annulus fibrosus, and chemical and biomechanical shifts that 

can accelerate or decelerate over time. Second, discs do not degenerate in isolation. The 

mechanical environment of the spine means that once one level is compromised, the load 

distributions on adjacent segments can change, creating either compensatory mechanisms 

or new stress concentrations that hasten the degeneration of neighboring discs. Third, ex-

ternal factors — aging, repeated heavy lifting, prolonged sitting (as for taxi drivers), or 

awkward postures — create a dynamic interplay that modifies the rate and severity of 

disc degeneration. To address the pressing knowledge gap, one must capture both the 

time-dependent and spatial elements of disc behavior. 

In this paper, we aim to develop a rigorous, physics-statistics-based modeling frame-

work that interprets disc degeneration as a three-stage continuous stochastic process: (1) 

initiation, (2) increment (i.e., progression), and (3) propagation (i.e., transferring degener-

ative load or impetus to adjacent discs). We propose to analyze disc height loss, displace-

ment, annulus fibrosus tears, and other morphological indicators collectively, combining 

them into a single measure of “disc degeneration level.” By mapping these levels into a 

stochastic model, we intend to derive mathematical distributions for disc lifespans, or 

“time to serious damage.” Our approach’s novelty stems from embedding multi-direc-

tional branching within the model, capturing how a disc under stress not only deteriorates 

but may also exert a degenerative influence on contiguous discs in multiple directions. 

Once the fundamental course of DDD is described quantitatively, we will define 

“DDD metrics” — such as “the probability that a certain disc has reached a threshold of 

degenerative severity at time ttt,” or “the expected number of degenerated discs by age 

65.” We will link those metrics to clinically meaningful outcomes, including the onset of 

pain. Although not all degenerative changes trigger pain, a subset of disc conditions (e.g., 

disc herniation impinging on a nerve root) are known to cause discomfort or radiculopa-

thy. We plan to incorporate a bridging mechanism, so that once a disc’s degeneration sur‐

passes some threshold, the hazard rate of pain events in that disc drastically increases. 

This allows us to estimate the distribution of “time to first pain” or the probability that 

disc L5-S1 is responsible for a patient’s symptoms at a given future date. 

Overall, tackling degenerative disc disease with a three-stage framework of initiation, 

increment, and propagation, and linking the mathematical outcomes to the real question 

of “when does the patient feel pain?” can lead to a more robust, evidence-driven strategy 

for both prevention and treatment. By bridging the gap between purely imaging-based 

diagnosis and long-term predictive analytics, we aspire to guide clinicians, patients, and 

healthcare policymakers toward interventions at the right time in the right population — 

particularly in regions like Hong Kong, where the prevalence of DDD continues to rise 

due to demographic and occupational factors. 
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2. Literature Review

Most of current studies on DDD emphasize on the impact of loading on the change 

of discs’ morphological and mechanical properties. The level of static compressive loading, 

together with the magnitude and number of cycles of dynamic compression loading, is 

crucial to the change of disc’s morphological indicators, elastic modulus, fatigue strength 

and stiffness parameter. Notably, impact compression/bending loading induces much 

severer morphological and mechanical damage than static loading [1]. Discs’ survival rate 

and time-to-AF-displacement under cyclic compression and shear loading are experimen-

tally observed in [2]; the results indicate that shear loading is the primary reason of discs’ 

displacement. Discs’ degeneration level also affects its morphological and mechanical 

properties. Compared with intact discs, degenerated discs’ morphological properties [3] 

and mechanical properties [4] are more sensitive to different types of loading such as flex-

ion, extension, bending, shearing and torsion. Specifically, disc’s stiffness decreases while 

stability increases w.r.t. the degeneration level; morphologically, disc’s RoM increases and 

then decreases w.r.t the degeneration level. Studies also identify that discs’ degeneration 

interact with each other, where the interaction is particularly apparent for degenerated 

discs. The dependency among discs is morphologically observed in MRI, based on which 

statistical analysis is conducted to obtain the distribution of the degenerated discs over 

the entire spine. The intradiscal pressure and stiffness of a degenerated disc’s superior 

and inferior segments increase as compensation for the loss of RoM in the degenerated 

disc. The position of the degenerated disc also affects the RoM of its adjacent discs/seg-

ments [5]. 

Human disc degeneration modeling can be also studied from the perspective of reli-

ability modeling, assessment, and optimization of a population of components [6]. Build-

ing on the results, effective reliability testing [7], monitoring methodologies [8], control 

strategy [9], criticality analysis [10-12], and inspection and maintenance policy [13-17]. 

However, these studies fail to take the complex stochastic dependency among the compo-

nents into consideration, and therefore, these methodologies are inapplicable to modeling 

the DDD problem. 

3. Discs’ Degeneration Initiation, Increment and Propagation Modeling

3.1. Discs’ Degeneration Process 

Human spine contains 23 discs that absorb the shock between vertebrae and control 

the spine motion in three planes (flexion-extension, axial rotation and lateral bending). 

For arbitrarily individual disc (say, disc i, i = 1, … ,23),its degeneration is a continuous 

cumulative damage process w.r.t. factors such as age, load induced by daily activities and 

the degeneration level of its adjacent discs. Defining ( )iD t as the degeneration level of disc 

i at time t, we analyze ( )iD t  as a three-stage process:

Degeneration initiation stage ( )0, DIT

it T : DIT

iT is the time instant when disc i’s degen‐

eration initiates (i.e., disc i’s time-to-degeneration-initiation); fatigue damage induced by 

daily activities, shock damage induced by sudden injury and aging effect accumulate to 

initiate disc’s degeneration at time DIT

iT ; disc i is non-degenerated during this stage, i.e.,

( ) 0iD t = for ( )0, DIT

it T ; 

Degeneration increment stage ( ),DIT DPT

i it T T : disc i’s degeneration initiates at DIT

iT

and reaches its “degeneration propagation threshold” (DPT) DPT

iD at time instant DPT

iT , i.e., 

( )DPT DPT

i i iD T D= ; 

Degeneration propagation stage ( ),DPT PT

i it T T : disc i’s degeneration level reaches DPT

iD

at time DPT

iT and the degeneration is propagated to adjacent discs (i - 1) and (i + 1) to ac-

celerate their degeneration processes; meanwhile, disc i’s degeneration continues to in‐

crease.  
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Such a pattern applies to all discs, where the degeneration initiates and increases 

within individual disc and propagates among discs. Note that for arbitrary disc, its de-

generation process dynamically interacts with that of its adjacent discs. Specifically, disc 

i’s degeneration accelerates twice as discs (i - 1) and (i + 1) reach their DPTs at time instants 

1

DPT

iT − and 1

DPT

iT + , propagating the degeneration to disc i. Notably, i) DIT

iD and DPT

iD ∀i =

1, … ,23, are stochastically given and vary from individual to individual and ii) all discs’ 

degeneration processes are stochastic w.r.t. time due to the random variation of human 

daily activities, i.e., DIT

iT and DPT

iT are random variables with DIT DPT

i iT T  ∀i = 1, … ,23. 

3.2. Degeneration Process Modeling 

To understand the degeneration process of all discs, we will need to model the de-

generation initiation and increment of individual disc as well as the degeneration propa-

gation among multiple discs. 

3.2.1. Degeneration initiation of disc i 

The key to model the degeneration initiation of disc i is to identify the distribution of 

the time when disc i’s degeneration initiates (i.e., DIT

iT ). Disc i’s position ip , patient’s age

a , loading during the degeneration initiation stage ( ( )
0

DIT
iT

iZ t dt ), degeneration status of

adjacent discs (in terms of 
1 1 and DPT DPT

i iT T− +
) , potential sudden injury

iq , the degeneration

process randomness (  ) and other degeneration-related parameters (
T ) jointly deter-

mine DIT

iT (Eq. (1)). We will then derive the physics-statistics-based explicit form of ( )TF  ; 

specifically, we will either model the damage accumulation process as an IG (or Gamma) 

process with its parameters being functions of the above mentioned factors, or model 

disc’s degeneration rate as a nonparametric function (e.g., proportional hazard (PH) 

model and proportional odds (PO) model) w.r.t. the above factors.  

( )1 1
0

, , , , , , , , , ;
DIT

iT
DIT DPT DPT

i T i i i i i T TT F T T q p a s w g Z t dt − +

 
=  

 


       (1) 

3.2.2. Degeneration increment of disc i 

The key to model the degeneration increment process of disc I is to explore the dis-

tribution of ( )iD t . Note that ( )iD t is dependent on disc’s degeneration initiation process, i.e., 

( ) ( )
0

t
DIT DIT

i i i iD t D t T dT=  . As previously discussed, the degeneration process of disc i accel-

erates twice when the degeneration propagates from its adjacent discs (i - 1) and (i +1). To 

reflect this, we define ( )_

DIT

i s iD t T as disc i’s degeneration increment “amount” after s times 

( 0,1,2s = ) of accelerations and write ( )DIT

i iD t T w.r.t. 1

DPT

iT − and 1

DPT

iT + (Eq. (2)). 

( )
( )( )
( )( ) ( )( )

_ 2

_1 _ 2

max 0,                                                                                          if 

min , + max 0,

DIT DIT

i i i

DIT DIT DIT

i i i i i i

D t T A T

D t T D A T t T D t A

− 

= − − −

( )( ) ( )( ) ( )( )_ 0 _1 _ 2

 if 

min , + min , + max 0,  if 

DIT

i

DIT DIT DIT

i i i i i i

B T A

D B T t T D A B t B D t A T B





 


− − − − −  (2) 

where
 1 1max ,DPT DPT

i iA T T− +=
,

 1 1min ,DPT DPT

i iB T T− +=
and ( )_ 0 0i sD = . 

Including all factors that impact ( )DIT

i iD t T and referring to Eq. (2), we model ( )iD t  in

Eq. (3). We will derive the explicit form of Eq. (3) by referring to the similar procedures 

when deriving Eq. (1). 
( )

( ) ( ) ( )( )1 1
0

 =

max 0, ; , , , , , , , , , , ,   
DIT DIT DIT

i i i

i

t t t
DIT DPT DPT DIT

D i i i i i i i D D i
T T T

s

D t

F t T T T q p a w g s Z d D d dT    − +
=



−   
(3)
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Based on Eq. (3), we will obtain the distributions of DPT

iT , 1,...,23i =  (Eq. (4)). Note 

that terms DIT

iT , 1

DPT

iT − and 1

DPT

iT + in Eqs. (1) - (3) dynamically interact; this requires us to ex-

plore the joint distribution of , 1,...,23DPT

iT i = and that of , 1,...,23PT

iT i = . 

( ) ( )( )DPT DPT

i i iP T t P D t D = 
(4) 

3.2.3. Degeneration Propagation among Discs 

In addition to modeling the degeneration initiation and increment of individual disc, 

we also need to capture the two-direction degeneration propagation process. We will de-

velop a convolution model and use combinatorial approach to assess the time and “se‐

quence” in which discs’ propagations occur. The two models will enable us to investigate 

the degeneration process of all discs in terms of the sum of specific (or, all) discs’ degen‐

eration level (i.e., ( )( )ii i
i

P D t D
 



  ) and the distribution of degenerated discs (i.e., 

( )( )P I t i= ) at arbitrary time instant t , where D is arbitrarily given degeneration level and

( )I t is a random vector of degenerated discs at time t, e.g., ( ) ( )( )2,6,7P I t =  is the proba-

bility that discs 2,6 and 7 are degenerated at time t. 

3.3. Discs’ Reliability Metrics and DDD-Induced Pain 

As is clinically investigated, a DDD-induced pain occurs either when the degenera-

tion level of arbitrary degenerated disc (say, disc i) reaches its “pain threshold” PT

iD at ran-

dom time instant PT

iT (i.e., ( )PT PT

i i iD T D= ) or when the sum of specific (or, all) discs’ de‐

generation level reaches an “overall pain threshold” OPTD at random time instant OPTT (i.e.,

( )( ):  0OPT
i

OPT OPT

ii D T
D T D

 
= ), whichever is earlier. Writing the time when DDD-induced 

pain occurs as  min , , 1,...,23PT OPT PT

iT T T i= = , we will explore the distribution of OPTT and

PT

iT (Eqs. (5) and (6)), based on which we will thoroughly investigate the statistical metrics 

of PTT such as its distribution (Eq. (7)), expectation (Eq. (8)) and the probability that the 

pain is induced by disc i (Eq. (9)). We further define ( ) ( )=Prob PT

PTR t T t as “discs’ reliability”

at time t  and ( )PTE T as “discs’ DDD lifetime”. 

( ) ( )( )PT DIT PT

i i i iP T t P D t T D = 
(5) 

( ) ( )( ) ( ) ( )( )Prob  and  = and 0 OPT OPT OPT

i ii i
i i

T t P T t I t i P D t D D t i i
 

 

 =  =      
(6) 

( ) ( ) ( )  ( )
( )( ):  0

Prob Prob : 0  and 
i

PT PT OPT

i i i ii D t
T t D t D i D t D t D

 
 =    

(7) 

( ) ( )
0

ProbPT PTE T T t dt


=  ( )Prob PT PT

iT T=
(8) 

Note that the models proposed above also apply for discs’ reliability metrics predic‐

tion when specific (or, all) discs’ degeneration status are known. such as obtained in MRI. 

To illustrate, knowing that discs 'i (where i  is the vector of all degenerated discs) are 

degenerated at time 't with ( )' '_ '' ' 'i i tD t D i i=   , we predict the mean residual life (MRL) to 

DDD-induced pain ( ( )( )' '_ '' ' 'PT

i i tMRL T D t D i i=   ) in Eq. (9). 

( )( )
( ) ( ) ( )( )

( ) ( ) ( )( )

' '_ '

' '_ '
'

'_ ' _' ' ''

' ' '

 and   ' ' '

'  and '  

PT

i i t

OPT PT

i i i i i ti it

OPT PT

i i t i i i ti i i i i it

MRL T D t D i i

P D D D D i i D t D i i d

P D t D D D t D D i i d

  

  







    

=  

=     =  

= −  − −  −  



   
(9)
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4. Case Study

We consider a segment of two discs, shown in Figure 1, whose individual degrada-

tion processes follow a Wiener process with drift parameter 
i and diffusion parameter 

𝜎𝑖
2; when the disc i reaches a specified threshold 𝐷𝑖 , the degradation propagates among

the discs and their degradation rates accelerate to 𝜇̃𝑖, 𝑖 = 1,2. The associated parameters 

are given in Table 1. Length is measured in millimeters (mm), and time is measured in 

years. 

Figure 1. A schematic of a segment of two discs. 

Table 1. The parameters associated with the discs’ degradation processes. 

1
2

1 2
2

2 1D 2D μ1% μ2% 

0.2 0.015 0.25 0.02 0.6 0.6 0.3 0.4 

Based on the model proposed in this study, we provide an estimation of the time 

required for a transition from healthy discs to those necessitating surgical intervention, 

under different clinical intervention criteria. Specifically: 

1) Criterion 1: Surgical intervention is considered when the cumulative degrada-

tion reaches 2 mm. Under this criterion, the expected time to reach the threshold

is approximately 3.6 years, with the 10th percentile estimated at 2.7 years.

2) Criterion 2: Surgical intervention is triggered when any one disc experiences a

degradation of 1 mm. Under this condition, the expected time is about 2.9 years,

with the 10th percentile at 2.6 years.

These results not only provide a clear timeline for intervention under different deg-

radation thresholds but also underscore the sensitivity of the system to the chosen criteria. 

Our methodology demonstrates robust performance in capturing the interdependency of 

degradation processes between discs, which is crucial for accurate lifetime analysis. 

Furthermore, the analysis indicates that even slight variations in the clinical criteria 

can lead to significant differences in the predicted time to intervention. This finding em-

phasizes the importance of carefully selecting degradation thresholds to optimize patient 

outcomes. Additionally, our sensitivity analysis suggests that the dependency between 

discs plays a critical role in the progression of degradation, highlighting the potential for 

personalized management strategies in clinical practice. 

Overall, these insights confirm that the proposed modeling framework can effec-

tively quantify degradation dynamics and support the development of more precise, pa-

tient-specific intervention protocols. 

5. Conclusion

In summary, we have introduced a novel quantitative framework for investigating 

degenerative disc disease (DDD) as a three-stage continuous stochastic process, capturing 

disc initiation, progression, and propagation. By merging physics- and statistics-based 

models with branching mechanisms, we gain a dynamic perspective on how a given disc’s 

degeneration can influence adjacent discs over time. The proposed DDD metrics provide 
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clinically meaningful insights — ranging from the distribution of disc-specific time-to-

degeneration to the probability of multi-level involvement and pain onset. Moreover, by 

considering MRI snapshots as Bayesian-like evidence, the model can adapt to real patient 

conditions and update subsequent risk estimations accordingly, thereby facilitating more 

personalized interventions. 

Moving forward, several directions warrant exploration. First, expanding the dataset 

to include diverse populations — those with varied lifestyles, body mass indices, and 

comorbidities — would validate the model’s robustness across different demographic 

profiles. Second, integrating advanced imaging parameters (e.g., disc biochemical mark-

ers) may refine our understanding of disc microenvironment changes. Third, automated 

machine-learning approaches could further optimize parameter fitting, enabling real-time 

forecasting in clinical settings. Finally, randomized trials comparing different surgical or 

rehabilitative strategies based on model predictions could substantiate the practical ben-

efits of adopting an individualized, data-driven paradigm for DDD management. By pur-

suing these directions, we anticipate this framework will significantly improve early de-

tection, preventive care, and outcome optimization for patients at risk of degenerative disc 

disease. 
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