Comprehensive Analysis of GLP-1 Receptor Agonists in Regulating Inflammatory Pathways and Gut Microbiota
DOI:
https://doi.org/10.71222/00kff843Keywords:
GLP-1 receptor agonists, inflammation pathways, gut microbiota, metabolic regulation, diabetesAbstract
In addition to their well-established function in regulating blood glucose, GLP-1 receptor agonists (GLP-1RAs) also contribute significantly to mitigating inflammation and promoting the balance of gut microbiota. This investigation utilizes a multi-omics approach — incorporating transcriptomics, metabolomics, and metagenomics — to assess the impact of GLP-1RAs on inflammatory signaling pathways and gut microbial composition. The findings indicate that GLP-1 receptor agonists (GLP-1RAs) mitigate inflammation by regulating the NF-κB pathway and stimulate the growth of beneficial bacteria, such as Bacteroides and Lactobacillus, which are essential for sustaining metabolic harmony. These results provide new scientific support for the clinical use of GLP-1RAs in treating diabetes and associated metabolic conditions, while highlighting their role in inflammation control and microbiome modulation.
References
1. M. A. Ortega et al., "Type 2 diabetes mellitus associated with obesity (diabesity). The central role of gut microbiota and its translational applications," Nutrients, vol. 12, no. 9, p. 2749, 2020, doi: 10.3390/nu12092749.
2. M. A. Kyle and A. B. Frakt, "Patient administrative burden in the US health care system," Health Serv. Res., vol. 56, no. 5, pp. 755-765, 2021, doi: 10.1111/1475-6773.13861.
3. Y. Wang, Y. Wen, X. Wu, and H. Cai, "Application of ultrasonic treatment to enhance antioxidant activity in leafy vegetables," Int. J. Adv. Appl. Sci. Res., vol. 3, pp. 49-58, 2024, doi: 10.5281/zenodo.14275691.
4. L. A. Keller, O. Merkel, and A. Popp, "Intranasal drug delivery: opportunities and toxicologic challenges during drug de-velopment," Drug Deliv. Transl. Res., pp. 1-23, 2022, doi: 10.1007/s13346-020-00891-5.
5. C. R. Andreasen, A. Andersen, F. K. Knop, and T. Vilsbøll, "How glucagon-like peptide 1 receptor agonists work," Endocr. Connect., vol. 10, no. 7, pp. R200-R212, 2021, doi: 10.1530/EC-21-0130.
6. Y. Wang, M. Shen, L. Wang, Y. Wen, and H. Cai, "Comparative modulation of immune responses and inflammation by n-6 and n-3 polyunsaturated fatty acids in oxylipin-mediated pathways," World J. Innov. Mod. Technol., vol. 7, no. 4, pp. 7, 2024, doi: 0.53469/wjimt.2024.07(05).17.
7. J. S. Neves et al., "Risk of adverse events with liraglutide in heart failure with reduced ejection fraction: a post hoc analysis of the FIGHT trial," Diabetes Obes. Metab., vol. 25, no. 1, pp. 189-197, 2023, doi: 10.1111/dom.14862.
8. S. Tsalamandris et al., "The role of inflammation in diabetes: current concepts and future perspectives," Eur. Cardiol. Rev., vol. 14, no. 1, pp. 50, 2019, doi: 10.15420/ecr.2018.33.1.
9. Y. Wang, Y. Wen, X. Wu, L. Wang, and H. Cai, "Modulation of gut microbiota and glucose homeostasis through high-fiber dietary intervention in type 2 diabetes management," World J. Innov. Mod. Technol., vol. 7, no. 5, pp. 7, Oct. 2024, vol. 7, no. 6, pp. 4, 2024, doi: 10.53469/wjimt.2024.07(06).04.
10. R. D. S. Ferreira, L. A. B. M. Mendonça, C. F. A. Ribeiro, N. C. Calças, R. D. C. A. Guimarães, V. A. D. Nascimento, et al., "Relationship between intestinal microbiota, diet and biological systems: an integrated view," Crit. Rev. Food Sci. Nutr., vol. 62, no. 5, pp. 1166-1186, 2022, doi: 10.1080/10408398.2020.1836605.
11. Y. Wang, L. Wang, Y. Wen, X. Wu, and H. Cai, "Precision-engineered nanocarriers for targeted treatment of liver fibrosis and vascular disorders," World J. Innov. Mod. Technol., vol. 8, no. 1, 2025, doi: 10.53469/wjimt.2025.08(01).07.
12. G. Qu et al., "Self-assembled micelles based on N-octyl-N’-phthalyl-O-phosphoryl chitosan derivative as an effective oral carrier of paclitaxel," Carbohydr. Polym., vol. 207, pp. 428-439, 2019, doi: 10.1016/j.carbpol.2018.11.099.
13. C. I. Craciun et al., "The relationships between gut microbiota and diabetes mellitus, and treatments for diabetes mellitus," Biomedicines, vol. 10, no. 2, p. 308, 2022, doi: 10.3390/biomedicines10020308.
14. H. Wang et al., "RPF-ELD: Regional prior fusion using early and late distillation for breast cancer recognition in ultrasound images," in Proc. 2024 IEEE Int. Conf. Bioinformatics Biomed. (BIBM), 2024, pp. 2605-2612, doi: 10.1109/BIBM62325.2024.10821972.
15. X. Shi, Y. Tao, and S. C. Lin, "Deep neural network-based prediction of B-cell epitopes for SARS-CoV and SARS-CoV-2: Enhancing vaccine design through machine learning," in Proc. 2024 4th Int. Signal Process., Commun. Eng. Manag. Conf. (ISPCEM), 2024, pp. 259-263., doi: 10.1109/ISPCEM64498.2024.00050.
16. K. S. Alharbi et al., "Nuclear factor-kappa B and its role in inflammatory lung disease," Chem.-Biol. Interact., vol. 345, p. 109568, 2021, doi: 10.1016/j.cbi.2021.109568.
17. K. Xu, X. Mo, X. Xu, and H. Wu, "Improving productivity and sustainability of aquaculture and hydroponic systems using oxygen and ozone fine bubble technologies," Innov. Appl. Eng. Technol., pp. 1-8, 2022, doi: 10.62836/iaet.v1i1.1008.
18. S. F. Mehdi et al., "Glucagon-like peptide-1: A multi-faceted anti-inflammatory agent," Front. Immunol., vol. 14, p. 1148209, 2023, doi: 10.3389/FIMMU.2023.1148209.
19. T. Zhang, B. Zhang, F. Zhao, and S. Zhang, "COVID-19 localization and recognition on chest radiographs based on Yolov5 and EfficientNet," in Proc. 2022 7th Int. Conf. Intelligent Computing Signal Process. (ICSP), 2022, pp. 1827-1830, IEEE, doi: 10.1109/ICSP54964.2022.9778327.
20. W. Chirwa, P. Li, H. Zhan, Y. Zhang, and Y. Liu, "Application of fine bubble technology toward sustainable agriculture and fisheries," J. Clean. Prod., vol. 449, p. 141629, doi: 10.1016/j.jclepro.2024.141629.
21. Y. Wang, Y. Wen, X. Wu, L. Wang, and H. Cai, "Assessing the role of adaptive digital platforms in personalized nutrition and chronic disease management," World J. Innov. Mod. Technol., vol. 8, no. 1, 2025, doi: 10.53469/wjimt.2025.08(01).05.
22. D. Ceccarelli Ceccarelli and S. B. Solerte, "Unravelling shared pathways linking metabolic syndrome, mild cognitive im-pairment, dementia, and sarcopenia," Metabolites, vol. 15, no. 3, p. 159, 2025, doi: 10.3390/metabo15030159.
23. J. B. Qiao et al., "Vitamin A-decorated biocompatible micelles for chemogene therapy of liver fibrosis," J. Control. Release, vol. 283, pp. 113-125, 2018, doi: 10.1016/j.jconrel.2018.05.032.
24. Y. Wang, Y. Wen, X. Wu, and H. Cai, "Comprehensive evaluation of GLP1 receptor agonists in modulating inflammatory pathways and gut microbiota," World J. Innov. Mod. Technol., vol. 7, no. 5, Oct. 2024, doi: 10.53469/wjimt.2024.07(06).23.
25. A. Pant, T. K. Maiti, D. Mahajan, and B. Das, "Human gut microbiota and drug metabolism," Microb. Ecol., vol. 86, no. 1, pp. 97-111, 2023, doi: 10.1007/s00248-022-02081-x.
26. J. Zhu et al., "Multimodal nanoimmunotherapy engages neutrophils to eliminate Staphylococcus aureus infections," Nature Nanotechnol., pp. 1-12, 2024, doi: 10.1038/s41565-024-01648-8.
27. M. Rroji, N. Spahia, A. Figurek, and G. Spasovski, "Targeting diabetic atherosclerosis: The role of GLP-1 receptor agonists, SGLT2 inhibitors, and nonsteroidal mineralocorticoid receptor antagonists in vascular protection and disease modulation," Biomedicines, vol. 13, no. 3, p. 728, 2025, doi: 10.3390/biomedicines13030728.
28. I. K. Lee et al., "Micromolded honeycomb scaffold design to support the generation of a bilayered RPE and photoreceptor cell construct," Bioact. Mater., vol. 30, pp. 142-153, 2023, doi: 10.3390/biomedicines13030728.
29. N. T. Doncheva et al., "Human pathways in animal models: possibilities and limitations," Nucleic Acids Res., vol. 49, no. 4, pp. 1859-1871, 2021, doi: 10.1093/nar/gkab012.
30. J. R. Ussher and D. J. Drucker, "Glucagon-like peptide 1 receptor agonists: cardiovascular benefits and mechanisms of ac-tion," Nat. Rev. Cardiol., vol. 20, no. 7, pp. 463-474, 2023, doi: 10.1038/s41569-023-00849-3.